Effects of different frequencies of loading on healing in partial rupture of the Achilles tendon in a rat model

*NS MKUMBUZI, *HM CHINYANGA, **W WOOD, *SKT MUDAMBO, ***M GOVA

Abstract

Objective: To determine the histological effects of different frequencies of loading in a healing Achilles tendon following partial rupture.

Design: Experimental laboratory study.

Setting: University of Zimbabwe, Department of Physiology, Animal house.

Subjects: Sixty female Sprague-Dawley rats

Intervention: Partial tenotomies of the right Achilles tendon were performed surgically. From day 1 postoperatively, the animals were allocated to treadmill running at different frequencies (once (OD), two (BD), three (TDS) and four (QID) times daily) up to 21 days. Histological sides of the tendons were made at days 7, 14 and 21 and interpreted by a blinded pathologist

Main Outcome Measures: Collagen fibre orientation, inflammatory cell populations, fibroblast morphology and neoangiogenesis were observed and scored using the Grande Biomechanical Histological Correlation Score.

Results: Mean weight was 209.67g ±30.14. The best and worst arrangements of collagen were in the QID group (73%) and OD group (46.7%) respectively. These differences were not statistically significant (p=0.487). The BD group had the most mature fibroblast nuclei and the QID tendons had the least mature (p=0.577). Inflammatory cell populations were independent of loading frequency (p=0.132).

Conclusion: Changing the frequency of the same type of loading in a healing tendon does not have an effect on the healing process in partially ruptured Achilles tendons during the inflammatory and proliferative phases.

Introduction

Nearly five hundred years after the first description of a conservative protocol of management by Ambroise Pare (c1510-1590), optimal rehabilitation of Achilles Tendon Rupture (ATR) continues to elude clinicians

Correspondence to:

Nonhlanhla Sharon Mkumbuzi
Department of Physiology
University of Zimbabwe, College of Health Sciences
P O Box MP 167, Mount Pleasant, Harare
Zimbabwe

Email: nsmkumbuzi@gmail.com
Ethical considerations.

Ethical clearance to conduct this research was obtained from the Joint (Parirenyatwa and College of Health Sciences) Research and Ethic Committee (JREC) at the University of Zimbabwe. All institutional and international guidelines to the care of laboratory animals were adhered with.

Statistical analysis.

The data was analysed using STATA version 10. We used the chi-square test to test for associations between the frequency of loading and the observed effects. In some instances the Fisher's exact test was used. Means were calculated using the Student's t-test. All values were reported as Mean (SD) [range] unless otherwise stated. Statistical significance was pegged at the 0.05 level.

Results

The weight of the rats were normally distributed, mean 209.67g (SD=30.14). Twelve slides were deemed unreadable and were removed from the analysis. All the tendons analysed showed signs of healing despite the early weight bearing beginning day one post surgery (p<0.05).
Effect on collagen fibre orientation

Normal tangential collagen (figure I) was observed in 20% of the experimental specimen (n=15). Forty percent of these were in the BD group. Performing the treadmill protocol once daily yielded the most disorganised collagen fibre orientation.

Effect on fibroblast concentrations and nuclei shape

Very high fibroblast counts were observed in 11 (n=57) specimens from the experimental limb. High fibroblast counts were observed in 26 specimens and of these ten were from the QID group (figure IV). Immature, plump fibroblast nuclei were observed in 81% of the tendons (46/57). The highest number of immature fibroblast nuclei was observed in the QID while the BD had the most mature nuclei. No spindle shaped nuclei were observed in the TDS group. These observations were not statistically significant (p=0.577).

Effect on inflammatory cell populations:

Thirty five (61%) of the experimental tendons had very low neutrophil and lymphocyte counts while all the control limbs (n=48) had very low neutrophil counts. By day 21, the neutrophil counts were very low (p=0.003). The lowest neutrophil and lymphocyte counts were observed in the QID group and the highest neutrophil and lymphocyte counts were in the BD and TDS groups respectively (figure V). Inflammatory counts were independent of the frequency of loading (p=0.132).
Figure V: Very high inflammatory cell concentration.

No eosinophils, macrophages or basophils were observed in the tendons. Generally, inflammation was acute on chronic in the experimental limb and non-existent in the control limb. Isolated hyaline cartilage nodules were observed in two slides that were unremarkable on further analysis.

Effect on neoangiogenesis: Vascularisation with either capillaries (n=26) or arterioles (n=24) was observed in 90% of the tendons. Tendons from the QID group demonstrated the most advanced neoangiogenesis as all the tendons were with capillaries at the very least. Neoangiogenesis was not dependant on the frequency of loading (p=0.435).

Discussion

Achilles tendon rehabilitation is a long process fraught with controversy on the ideal management protocols. This study sought to establish the effects of known frequencies of loading on collagen fibre orientation, inflammatory cell populations, fibroblast morphology and neoangiogenesis in the inflammatory and proliferative phases of Achilles tendon healing following partial rupture.

Angiogenesis plays a key part in tendon healing by re-establishing circulation and limiting ischemic necrosis at the injury site while permitting repair. This process is initiated by the release of factors such as Vascular Endothelial Growth Factor (VEGF), bradykinin and NO from inflammatory cells. In this study we observed no differences in neoangiogenesis across the different exercise groups at days 7, 14 and 21. As did Palmes et al., Salate et al. however, observed an effect on neoangiogenesis with laser therapy in partially ruptured rat Achilles tendons on days 3 and 5 post rupture. In this study we may have failed to observe a significant effect on neoangiogenesis because by day 7, the number of new blood vessels decreases and returns to normal. This result was reflected by other researchers. On the other hand, Nakama et al. observed increases in VEGF and capillary densities in loaded rabbit tendons at 14 weeks. As the latter was a tendinopathy model, the observed new capillaries may have been pathological.

In this study, the control tendons had very few inflammatory cells; a sign that there was no underlying inflammatory process. The different frequencies of loading had no effect on the population of inflammatory cells in the experimental limb but the changes in concentration of neutrophils with time were significant. This demonstrates that after the initial inflammatory response which is most observable in the first week, the inflammation resolved and did not persist which is a good indicator of healing. Studies on the inflammatory response in tendons show that inflammation begins soon after the onset of exercise and persists for a short while after. These mediators lead to release of vasoactive and chemotactic factors which recruit fibroblasts and begin collagen synthesis.

Fibroblasts are the dominant cell type in tendons and are responsible for the changes that result from mechanical loading by altering Extracellular Matrix (ECM) proteins. Mechanical loading enhances repair by stimulating fibroblast activity for instance through increasing collagen synthesis. During the proliferative phase of healing, we expected to observe fibroplasia and fibrobrillogenesis in the tendon. This was not observed in the tendons in this study. As a result, a concomitant low production of collagen could be expected.

Collagen fibres are the main structural component of tendon. They provide the tensile strength of the tendon and are at their greatest mechanical advantage when they are arranged parallel to the axis of greatest tension. A highly linear collagen fibre arrangement translates to a tendon with a high Ultimate Tensile Strength (UTS).

In this protocol, changing the frequency of loading had no effect on the collagen fibre orientation of healing tendons. Similar results were observed by Boyer et al. who noted no differences in the healing response of canine flexor tendons regardless of the training group they were assigned to. Other results from an in vitro study by Bosch et al. also support these observations. In their study, they demonstrated that collagen synthesis is dependent not on the amount or type of loading but on the post loading resting time. The authors postulate that with rest times of >24 hours between bouts of exercise it is highly likely that collagen synthesis would increase as a consequence of increased fibroblast proliferation. This is echoed by Miller et al. who demonstrated that adaptation of the Extracellular Matrix (ECM) occurs acutely within 24 hours. An article from Kjaer et al. reflects the same view. They argue that acute exercise leads to Matrix Metalloprotease (MMP) regulated collagen catabolism which is then followed by collagen...
This effect lasts for up to 3 days in humans. Kjaer et al conclude that increases in the collagen synthesis arise from a mechanically induced anabolic pathway using MAP kinase which is an enzyme controlled receptor. As with any enzyme system, the principles of enzyme-substrate saturation should apply. As such, the intracellular proteins produced because of the initial loading episode are likely to form and maintain receptor-ligand bonding for long periods of time during which another loading episode would stimulate more intracellular proteins that would not have an effect because of the unavailability of binding sites. In this instance, the authors (Kjaer et al) noted that the resting values of these proteins were approximated at around 72 hours post-initial loading. Also, repetitions of acute exercise bouts would lead to even more collagen catabolism and hence may actually have an inhibitory effect on healing. In another study on in vivo application of static loads in chicken flexor tendons, Slack et al established that increased collagen synthesis could still be detected 72 hours after a single bout of mechanical loading. This gives credence to the notion of “tendon memory” as postulated by Andersson et al who also found no added benefit to repeating the same type of exercise within a 24 hour period. They suggested that the tendons “remembered” the initial loading episode and hence did not respond to subsequent loading of the same type.

In this work we assumed that any loading episode shorter than 15 minutes as previously done by Andersson et al would be short enough to have an effect if repeated. From these results it appears it is enough that the tendon has perceived a loading stimulus, however short. However, as did the prior group, in our study we failed to take into consideration the improvements in tendon parameters with time. We maintained the same exercise protocol throughout the experiment and while it may have been correctly dosed at the start of the experiment it may well have become suboptimal as the experiment progressed. A more efficient way would have been to use undulating periodisation in the frequency of the treadmill running.

These results collectively suggest that after application of a single loading episode there is no need to repeat the same loading protocol within 24 hours as it would have no added effect to collagen synthesis, alignment and eventual healing. Contrary to this assertion, Takai et al showed that the frequency of controlled motion of healing flexor tendons is a significant factor in accelerating the healing response with higher frequencies being more beneficial. Their results show improved tendon structure at three weeks and six weeks post-operatively in the high frequency group. Key differences though from the current study are that they performed passive movement of the tendons. This type of movement has a different cellular signalling pathway from active movement. In addition, they observed for changes at 21 and 42 days. At these time points in the healing process the changes are well demarcated and are easily distinguishable. The present study observed for similar variables but earlier and with shorter periods between, at a time when more sensitive tests other than histology could have identified the differences. Histological analysis however, has been used successfully in other tendon studies.2,3

In general, the results of this study show evidence of different histological effects in healing tendons exposed to varying frequencies of mechanical loading even during the early stages of healing. These observations however, were not statistically significant. As such, changing the frequency of application of the same type of mechanical loading does not have an effect on healing in partial rupture of the Achilles tendon during the inflammatory and proliferative phases. This highlights nature’s intolerance for monotony and should act as a guide to the prescription of exercise in clinical practice.

The study also supports the beneficial effect of early weight-bearing post tendon rupture. This is in agreement with other studies that have found that early weight-bearing is not detrimental to tendon healing.2,11 It does however, disagree with other authors2,11 who found no benefit to loading a healing Achilles tendon in the early stages of healing. These results though should be interpreted cautiously as this was study was conducted in a rat model. Rats are quadruped animals and can better adjust weight bearing through an injured limb better than a bipedal human, for whom these data will be inferred. In addition, this study was conducted during the early stages of healing in a partial rupture of the Achilles tendon as a result it is difficult to extrapolate the conclusions to full ruptures in long term healing. In general, methodological consistency is low across studies on tendon studies. Some studies were conducted in vitro19,20 others though in vivo were in canines4 while others used the rabbit anterior cruciate ligament19 and some though in rodent Achilles tendon observed changes at different time points during early healing or at different stages of healing altogether.20 This limits the generalisability of the data obtained from these studies.

Conclusion

The use of early functional weight-bearing has now become widely accepted as a valid and safe option in tendon rehabilitation. However, doubts still exist on the prescription of weight-bearing exercise. In this study we examined the effects of different frequencies of weight-bearing (loading) exercise on early healing in partial rupture of the Achilles tendon. Our results demonstrate that changing the frequency of the same type of loading within a 24 hour period has no bearing on the healing during the inflammatory and proliferative phases. We concur with previous work that intimated on a tendon memory. Further studies to
define the components and longevity of this tendon memory are needed to better inform clinical practice on how often a healing Achilles tendon should be loaded following partial rupture. In clinical practice, these results also show the need to vary the type of exercise prescribed during early rehabilitation in order to optimise tendon healing.

Acknowledgements

The authors would like to thank Dr S Chanaiwa for assisting with the tenotomies and Dr T V Javangwe for the interpretation of the histological slides. This work was supported by funding from the WELLCOME Trust under the SACORE grant.

References

24. Slack CM, Flint MH, Thompson BN. Effect of tensitional load on isolated embryonic

