USING MODELLING AS A MANAGEMENT TOOL FOR WATER RESOURCES: IDENTIFYING PROBLEMS AND CAUSES AND PROVIDING SOLUTIONS TO CURRENT EUTROPHICATION PROBLEMS IN LAKE CHIVERO

by

Itai Hilary Tendaupenyu

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Tropical Resource Ecology

Department of Biological Sciences
Faculty of Science
University of Zimbabwe
P.O. Box MP 167
Mount Pleasant
Harare
Zimbabwe

July 2004
Abstract

The PAMOLARE model can be used as an effective tool for managing water resources. Projections show that in the next 25 years Lake Chivero’s water quality will further deteriorate if there are no measures taken immediately to reduce the rapid inflow of nutrients into the lake. Reducing the phosphorous and nitrogen loadings into Lake Chivero from 24.4 g/m²/year to 0.5 g/m²/year and 108.9 g/m²/year to 2 g/m²/year respectively will see the recovery of the lake within 5 years of implementing remedial steps. The failure to implement remedial measures is predicted to result in residents of Harare and neighboring towns facing escalating water charges since the costs of water treatment will increase due to the increased water pollution.
"We may all see that freshwater ecosystems are at risk; we therefore need also to act with the knowledge and resources needed for sustainable change”.

-Chief Emeka Anyaoku

"A vision without action is just a dream; an action without vision just passes time; a vision with an action changes the world."

-Nelson Mandela.

Lake Chivero requires both vision and action to see it turn around and eliminate the pollution problem. The lives of millions are at stake. The time to act is now.
ACKNOWLEDGEMENTS

When I started my Masters programme, I never imagined myself getting this far. I would never have been able to achieve the feats that I have today were it not for the following people and their contributions: Prof. Magadza for all his guidance and encouragement. He has been my supervisor since undergraduate level; Cindy Whittet, Andrea Meade and the Clough family for assisting me financially throughout my research; My parents for the efforts that they have put to make sure I survive from day to day as well as their encouragement; Prof. Marshall and people at the MTHF (Biological Sciences Department, UZ) for all their material and human support which was really important in completing this thesis; Mr. Nhapi for the Lake parameters as well as for taking time to help out with the finer aspects of the research; lastly to all those who assisted me but are not mentioned here. May God bless you all.
CONTENTS

Abstract
Acknowledgements
Table of contents
List of Tables
List of Figures
List of Appendices

INTRODUCTION
Freshwater resources and problems facing its management
Background Information on Lake Chivero
History of the State of the Lake.
Legislative and Institutional Framework Governing water Pollution
Pollution contributions of major rivers into Lake Chivero
The Mukuvisi River
The Marimba River
The Manyame River
Problems in Lake Chivero
Eutrophication in Lake Chivero
RESULTS

Precipitation changes in Upper Manyame Area and water residence time

High range climate sensitivity and percentage precipitation change

Mid range climate sensitivity and temperature change

Low range climate sensitivity and percentage precipitation change

Effect of increasing residence time on lake biology and chemistry

Effect of high range climate sensitivity on water biology and chemistry

Effect of mid range climate scenario on water biology and chemistry

Effect of low range climate scenario on water biology and chemistry

Climate change and water temperature changes in Lake Chivero

High range climate scenario for both SRESA2 and SRESB1

Mid range climate scenario for both SRESA2 and SRESB1

Low range climate scenario for both SRESA2 and SRESB1

Two-layer simulations of effect of temperature change on water oxygen levels

Effect of changing water temperatures under high climate Sensitivity

Effect of changing water temperatures under mid level climate Sensitivity
DISCUSSION
Recommendations to possible solutions to the eutrophication problem

Seeking alternative water sources
Public participation
Penalizing polluting industries
Wetlands as a purification tool
Sound governance
Need for continued monitoring
Proper planning when expanding residential areas

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Existing Sewage Treatment Works in the greater Harare Area</td>
<td>15</td>
</tr>
<tr>
<td>Table 2</td>
<td>Population trends in Harare from 1992-2002</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1</td>
<td>Map of Lake Chivero Catchment</td>
<td>13</td>
</tr>
<tr>
<td>Fig 2</td>
<td>Schematic presentation of settlements, waste management and water supply in Greater Harare and Chitungwiza</td>
<td>17</td>
</tr>
<tr>
<td>Fig 3</td>
<td>The role of ecological modelling in lake resource management</td>
<td>18</td>
</tr>
<tr>
<td>Fig 4</td>
<td>SCENGEN generated map of projected precipitation change in the high climate sensitivity range (SRESB1) for the Southern Africa region.</td>
<td>23</td>
</tr>
<tr>
<td>Fig 5</td>
<td>SCENGEN generated map of projected precipitation change in the high climate sensitivity range (SRESA2) for the Southern Africa region.</td>
<td>34</td>
</tr>
<tr>
<td>Fig 6</td>
<td>SCENGEN generated map of projected precipitation change in the mid climate sensitivity range (SRESB1) for the Southern Africa region.</td>
<td>35</td>
</tr>
<tr>
<td>Fig 7</td>
<td>SCENGEN generated map of projected precipitation change in the mid climate sensitivity range (SRESA2) for the Southern Africa region.</td>
<td>36</td>
</tr>
</tbody>
</table>
Fig 8: SCENGEN generated map of projected precipitation change in the low climate sensitivity range (SRESB1) for the Southern Africa region. 37

Fig 9: SCENGEN generated map of projected precipitation change in the low climate sensitivity range (SRESA2) for the Southern Africa region. 37

Fig 9b: PAMOLARE projections of nitrogen and phosphorous levels in a business as usual situation using reference scenario IS92a 38

Fig 10: PAMOLARE simulations on the effect of changing water residence time on nitrogen levels using: a) SRESB1 to 1.637 years and b) SRESA2 to 1.782 years from the current 1.6 years. 39

Fig 11: PAMOLARE simulations on the effect of changing water residence time on phosphorous levels using: a) SRESB1 to 1.637 years and b) SRESA2 to 1.782 years from the current 1.6 years. 40

Fig 12: PAMOLARE simulations on the effect of changing water residence time on primary production using: a) SRESB1 to 1.637 years and b) SRESA2 to 1.782 years from the current 1.6 years. 40
Fig 13: PAMOLARE simulations on the effect of changing water residence time on nitrogen levels using: a) SRESB1 to 1.626 years and b) SRESA2 to 1.728 years from the current 1.6 years.

41

Fig 14: PAMOLARE simulations on the effect of changing water residence time on phosphorous levels using: a) SRESB1 to 1.626 years and b) SRESA2 to 1.728 years from the current 1.6 years.

41

Fig 15: PAMOLARE simulations on the effect of changing water residence time on primary production using: a) SRESB1 to 1.626 years and b) SRESA2 to 1.728 years from the current 1.6 years.

42

Fig 16: PAMOLARE simulations on the effect of changing water residence time on nitrogen levels using: a) SRESB1 to 1.618 years and b) SRESA2 to 1.692 years from the current 1.6 years.

43
Fig 17: PAMOLARE simulations on the effect of changing water residence time on phosphorous levels using: a) SRESB1 to 1.618 years and b) SRESA2 to 1.688 years from the current 1.6 years.

Fig 18: PAMOLARE simulations on the effect of changing water residence time on primary productivity using: a) SRESB1 to 1.618 years and b) SRESA2 to 1.688 years from the current 1.6 years.

Fig 19: PAMOLARE projections of the Secchi depth in Lake Chivero over the next 25 years.

Fig 20: SCENGEN generated map on temperature change in Upper Manyame area by the year 2025 in the mid climate sensitivity range

Fig 21: SCENGEN generated map on temperature change in Upper Manyame area by the year 2025 in the mid climate sensitivity range.

Fig 22: SCENGEN generated map on temperature change in Upper Manyame area by the year 2025.
Fig 23: Effect of changing the annual water temperature by 0.8°C on lake oxygen levels

Fig 24: Effect of changing the annual water temperature by 0.5°C on lake oxygen levels

Fig 25: Effect of changing the annual water temperature by 0.4°C on lake oxygen levels

Fig 26: PAMOLARE projections of phosphorous levels if population a) remains constant and loading remains at 24.4g/m²/yr and b) increases by 3.5% and increasing loading to 34.42g/m²/yr over the 2000-2010 period.

Fig 27: PAMOLARE projections of nitrogen levels if population a) remains constant and loading remains at 108.9g/m²/yr and b) increases by 3.5% and increasing loading to 153.61g/m²/yr for the 2000-2013 period
Fig 28: PAMOLARE simulation of lake chemistry if total nitrogen: 54

 a) loading remains at 108.9g/m2/yr and

b) loading is reduced to 2g/m2/yr.

Fig 29: PAMOLARE simulation of lake chemistry if total phosphorous 55

 a) loading remains at 24.4g/m2/yr and

b) loading is reduced to 0.5g/m2/yr.

Fig 30: PAMOLARE simulations showing the average maximum

 primary production in Lake Chivero upon reduction

 in nitrogen and phosphorous loadings to 2 and 0.5g/m2/yr.

 respectively. 55

Fig 31: PAMOLARE simulations of fish yields in Lake Chivero if

 a) nitrogen and phosphorous loadings remain at 108.9

 and 24.4g/m2/yr respectively and b) nitrogen and phosphorous

 loadings are reduced to 2 and 0.5g/m2/yr respectively 56
LIST OF APPENDICES

Appendix 1: Trophic status of some South Africa Reservoirs

74

Appendix 2: Two-layer model parameters used in simulation of current state of Lake Chivero

74

Appendix 3: Initial data composer values in two layer model

75

Appendix 4: Initial data input into 1-layer model for Lake Chivero

75

Appendix 5: Initial data input for 1-layer model for Lake averages

Nitrogen and phosphorous levels

75

Appendix 6: Lake Chivero Morphology

76