ABSTRACT

A sporulating, aerobic Bacillus subtilis sp. was isolated from the Chimanimani hot spring in Zimbabwe. The microorganism was characterised using classical identification tools and molecular techniques. The microbial strain was designated Bacillus subtilis CHZ1. It produced an endoglucanase enzyme when cultured on M162 medium with an initial value of pH within the range 5.0 – 9.0 and a temperature range between 30°C and 50°C. The optimal conditions for the production of the endoglucanase enzyme were a pH value of 6.0 and temperature of 50°C. The enzyme was produced constitutively when the microorganism was cultured in M162 medium supplemented with either starch, cellobiose, carboxymethylcellulose, sucrose, glucose, galactose, Avicel, lactose, mannose or maltose as carbon sources.

The Bacillus subtilis CHZ1 was found to produce hydrolytic extracellular enzymes when cultured on a medium extracted from opaque beer brewery wastewater supplemented with defatted soya, spent yeast and malt flour. The medium from the food waste materials was named CWW medium. Elimination of one raw material component during CWW medium preparation revealed that all the components were essential for maximum enzyme production. The absence of spent yeast during CWW medium preparation greatly reduced the levels of enzyme production. In addition, the microorganism produced endoglucanase, amylase, polygalacturonase, xylanase and protease when cultured on CWW medium. All assayed enzymes reached high levels within 5 – 10 h during fermentation at 40°C and pH maintained at 6.0 in fermentor experiments. A cultivation temperature of 50°C resulted in a rapid drop in all the enzyme levels after 12 h of cultivation. High biomass and enzyme levels were obtained in fermentor cultivations compared to shake flask experiments. This showed that food wastes could be used to produce hydrolytic enzymes from B. subtilis CHZ1.

A proteolytic enzyme produced by a B. subtilis CHZ1 was purified using ammonium sulphate precipitation, gel filtration and cationic exchange on S-Sepharose fast flow column chromatography. Production of the protease enzyme was higher when the Bacillus strain was cultured in a synthetic medium, M162, supplemented with 0.3 % (w/v) organic compared to inorganic nitrogen sources. Enzyme production was growth associated and its production was highest when tryptone was used as the nitrogen source. When run on SDS-PAGE gel, the purified enzyme gave a 35 kDa band, suggesting that it consisted of a single polypeptide chain. High protease enzyme activity was observed in the pH range of 6 – 10 with a maximum value at pH 8.0 when 0.5 % (w/v) azocasein was used as the substrate for activity assay. Maximum temperature for protease activity was found to be 50°C, and the enzyme had considerable thermal stability for 5½ h retaining about 90 % residual activity at this temperature. At 2.5 mM concentration, PMSF, Ag⁺ and Hg⁺ caused marked reduction in activity on the protease enzyme. Natural biological metal cofactors that include Mn²⁺, Mg²⁺ and Fe²⁺ increased the enzyme activity, while Zn³⁺, Cu²⁺ and Ca²⁺ did not affect the enzyme's activity. The protease pH and thermal stability as well as high activity expressed by small amounts of the enzyme can be exploited for industrial applications.

The endoglucanase gene (celG) from B. subtilis CHZ1 was amplified by the polymerase chain reaction, cloned and expressed in Escherichia coli DH5α. The amplified fragment with the full celG structural gene was 2 589 bp and its nucleotide sequence was determined and analysed. The amplified fragment had an open reading frame of 1 524 bp encoding a predicted protein of 56 472 daltons in size containing 508 amino acids. The most likely ribosomal binding site resembling that of B. subtilis σ⁴³ RNA polymerase was identified upstream of the highly likely initiation start codon. The gene contains a secretory signal sequence encoding a peptide of 38 amino acid residues. A BLASTN search using the 2 589 bp sequence showed 98 % identity to endo-β-1,4-glucanase genes
in the databases. Its predicted protein structure was that of an endoglucanase comprising a catalytic
domain (CD) of 278 amino acids linked to a cellulose-binding domain (CBD-3) with 83 residues.
The enzyme was identified as belonging to the family-5A glycosyl hydrolases. Amino acid
alignment of the predicted protein with the aid of SWISSPro computer program gave high
homology. The regular seven conserved regions of the endoglucanase enzymes were identified on
Cel5G.
The celG gene was overexpressed in *E. coli* DH5α and could be induced 10 fold with 1.0 mM
IPTG. The cloned endoglucanase enzyme optimal activity conditions were the same as those of the
wild type strain. It was however observed that about 70 % of the endoglucanase activity from the
clone was cell bound.
Site directed mutagenesis at position 1168 of the celG endoglucanase enzyme resulted in the
production of an inactive enzyme.
ACKNOWLEDGEMENTS

I am very grateful to those people who allowed me to work under their supervision and guidance in their laboratories:

a) Dr. Zvuya R., my supervisor, introduced me to the science field of thermophilic cellulases. He was more than a supervisor, his generous concern in my social issues and tolerance is greatly appreciated. I will remember him from his saying “YOU CANNOT HAVE IT BOTH WAYS”.

b) Dr Sithole-Niang I., my co-supervisor, with whom I started the endoglucanase gene cloning work. Her social interaction with students is conducive to an extremely relaxed and memorable environment in the Molecular Biology Laboratory.

c) Dr. Bo Mattiasson Head of Biotechnology Center, Lund University of Sweden, whom I worked with in cloning the endoglucanase gene of the *B. subtilis* CHZ1.

I would like to also thank the following people: Dr Benhura M. A. N. for reasons better known to us “Musharukwa handikukanganwei”, the following colleagues from the University of Zimbabwe flavoured this study in many ways: late Dr. Mugochi T., Dr. J. Bvochora, Dr. Tekere M., Chisadza L. and Dr. Mawadza C., in the Molecular Biology Laboratory, I would like to thank Mr Dhlamini Z. for introducing me to the simplest way of cloning using PCR technique, Mundembe R., my BEST friend, you believe in me and I wish you the best in your endeavours, Madya B., my wife♥, who shouldered and painstakingly endured the family responsibilities when I was studying in Sweden. She used to remind me that, ”Zvinhu zvaoma chengetai mari” whenever I phoned home. She is the best partner I have ever had in my life garnering a solid foundation to our marriage.

Finally, I would like to thank The University of Zimbabwe, Biochemistry Department for providing Teaching Assistantship during the course of this PhD study. The Swedish Agency for Cooperation with Developing Countries (SAREC) and The Research Board, University of Zimbabwe for funding this project.
TABLE OF CONTENTS

ABSTRACT ... i

Acknowledgements ... iii

TABLE OF CONTENTS ... iv

List of tables.. x

List of figures.. xi

Abbreviations ... xiii

CHAPTER 1 .. 1

1.0 INTRODUCTION ... 1

CHAPTER 2 .. 4

2 LITERATURE REVIEW ... 4

2.1 Natural occurrence of cellulose ... 4

2.2 NATURAL CELLULOSE PHYSIOCHEMICAL PROPERTIES ... 5

2.2.1 The Microfibrillar component of cellulose ... 5

2.2.2 The Matrix component of cellulose .. 6

2.3 USES OF CELLULOSE AND CELLULOSE DERIVATIVES ... 8

2.4 METHODS OF HYDROLYSING CELLULOSE ... 9

2.4.1 Physical and mechanical methods of hydrolysing cellulose .. 9

2.4.1.1 Grinding method ... 9

2.4.1.2 Irradiation methods .. 10

2.4.1.3 Use of high and low temperatures .. 10
2.4.2 Chemical methods of hydrolysing cellulose ... 10
2.4.2.1 Alkali and acid hydrolysis .. 10
2.4.2.2 Organosolv hydrolysis .. 11
2.4.2.3 Ammonia treatment of cellulose ... 11
2.4.2.4 Delignification pretreatment ... 11
2.4.2.5 Steaming of cellulose ... 12
2.4.3 Enzymatic hydrolysis of cellulose .. 12
2.5 THERMOPHILIC BACTERIA AND THEIR ENVIRONMENTS 16
2.6 MODE OF THERMOPHILIC ADAPTATIONS .. 17
2.6.1 Morphology and physiology of thermophiles ... 18
2.6.2 Nature of cell membrane fatty acids and lipids of thermophiles 18
2.6.3 Extremophiles with novel lipid adaptations ... 19
2.6.4 Thermophilic enzyme adaptation mechanisms ... 20
2.7 MICROBIAL CELLULASES ... 21
2.7.1 Fungal cellulases .. 21
2.7.2 Bacterial cellulases .. 22
2.8 THE GENUS BACILLUS .. 24
2.9 AN OVERVIEW OF BACILLUS SPP. AND APPLICATIONS OF THEIR SECONDARY PRODUCTS ... 26
2.10 MICROBIAL ENDOGLUCANASE AND PROTEASE INTERACTION 27
2.11 APPLICATIONS OF CELLULASES AND OTHER HYDROLYTIC ENZYMES .. 29
2.12 CLONING OF CELLULASE ENZYMES .. 31
2.13 OBJECTIVES AND AIMS ... 35
2.13.1 Main objectives .. 35
CHAPTER 3

3 MATERIALS AND METHODS

3.1 MICROBIAL SOURCE AND SCREENING

3.2 STRAIN CHARACTERISATION AND IDENTIFICATION

3.2.1 Strain morphology, physiology and biochemical studies

3.2.2 16S rRNA gene amplification and analysis

3.3 OPTIMISING GROWTH AND ENDOGLUCANASE PRODUCTION CONDITIONS FOR B. SUBTILIS CHZ1

3.3.1 Effect of initial pH on growth and endoglucanase production

3.3.2 Effect of temperature on growth and endoglucanase production

3.3.3 Effect of carbon source on the growth and endoglucanase production

3.4 OPTIMISING ENDOGLUCANASE ASSAY CONDITIONS

3.4.1 Effect of temperature and pH on endoglucanase activity

3.5 TOTAL REDUCING SUGARS DETERMINATION AND ENZYME ASSAYS

3.5.1 Protease assay

3.5.2 Xylanase activity determination

3.5.3 Amylase assay

3.5.4 Polygalacturonase assay

3.6 FORMULATION OF MEDIUM FOR HYDROLYTIC ENZYMES PRODUCTION FROM FOOD WASTES

3.6.1 Food wastes medium preparation

3.6.2 Shake flask batch fermentation
3.6.3 Fermentor batch cultivations .. 43

3.7 **PURIFICATION OF A PROTEASE ENZYME FROM B. SUBTILIS CHZ1** 43

3.7.1 Effect of nitrogen source on the protease production ... 43

3.7.2 Culturing for protease purification .. 43

3.7.3 Protease purification and SDS-PAGE analysis ... 44

3.7.4 Protein content determination .. 44

3.7.5 Effect of temperature and pH on protease activity .. 45

3.7.6 Effect of temperature and pH on protease stability ... 45

3.7.7 Effects of metal ions and other inhibitors on protease activity .. 45

3.8 **AMPLIFICATION AND CLONING OF ENDO-β-1,4-GLUCANASE (CELG) GENE OF THE B. SUBTILIS CHZ1** .. 46

3.8.1 Bacteria strains, plasmids and culturing conditions.. 46

3.8.2 *B. subtilis* CHZ1 genomic DNA extraction .. 46

3.8.3 Endoglucanase (*celG*) gene fragment amplification.. 47

3.8.4 Endoglucanase gene fragment cloning and sequencing ... 47

3.8.5 Full endoglucanase (*celG*) gene primer designing ... 48

3.8.6 Endoglucanase (*celG*) gene amplification and cloning ... 49

3.8.7 *celG* gene sequencing and analysis... 49

3.8.8 Confirmation of *celG* orientation in pBEGc3 using T7 promoter primer 50

3.8.9 Expression of *celG* gene in *E. coli* DH5α... 51

3.9 **SITE-DIRECTED MUTAGENESIS TO INCREASE THERMOSTABILITY OF THE ENDOGLUCANASE** ... 52

CHAPTER 4 .. 54
4 RESULTS ... 54

4.1 SCREENING OF CELLULASE PRODUCING MICROORGANISMS ... 54

4.1.1 Taxonomic characterisation of strain ... 54

4.1.2 16S rRNA gene DNA analysis ... 55

4.2 OPTIMISING GROWTH CONDITIONS FOR ENDOGLUCANASE ENZYME PRODUCTION .. 56

4.2.1 Effect of initial pH and temperature on growth and endoglucanase production 56

4.2.2 Effect of carbon source on growth and endoglucanase production ... 59

4.3 PRODUCTION OF ENZYMES BY A. SUBTILIS ON FOOD WASTES MEDIUM .. 60

4.3.1 EFFECT OF MEDIUM COMPOSITION ON ENDOGLUCANASE PRODUCTION AND OTHER HYDROLYTIC ENZYMES. ... 60

4.3.2 Effect of temperature on hydrolytic enzyme production in fermentors 63

4.4 PURIFICATION OF PROTEASE PRODUCED BY B. SUBTILIS CHZ1 65

4.4.1 Effect of nitrogen source on protease production ... 65

4.4.2 Sephadex G-50 and S-Sepharose purification run ... 65

4.4.3 Effect of temperature and pH on the protease activity ... 68

4.4.4 Effect of metal ions and other inhibitors on protease activity ... 70

4.5 AMPLIFICATION AND CLONING OF AN ENDOGLUCANASE (CELG) GENE OF A. SUBTILIS CHZ1 ... 72

4.5.1 Amplification and cloning of the celG gene fragment ... 72

4.5.2 Amplification and cloning of full length celG gene ... 73

4.5.3 Analysis of celG gene .. 76

4.5.4 Analysis of structural and functional domains in CelG primary protein structure 77
CHAPTER 5... 81

5 DISCUSSION... 81

5.1 SCREENING AND CHARACTERISATION OF CELLULASE MICROBES........ 81

5.1.1 Screening of cellulase producing strains ... 81

5.1.2 Characterisation and identification of the cellulase producer................................. 81

5.2 OPTIMISING CONDITIONS FOR GROWTH AND ENDOGLUCANASE
PRODUCTION BY B. SUBTILIS CHZ1 ... 82

5.2.1 Effect of temperature and initial pH on the growth and endoglucanase production 82

5.2.2 Effect of carbon source on growth and endoglucanase production 84

5.2.3 Effect of protease enzyme on endoglucanase production .. 84

5.2.4 Effect of temperature and pH on endoglucanase activity 85

5.2.5 Applications of CelG enzyme ... 85

5.3 EFFECT OF FOOD WASTES ON PRODUCTION OF HYDROLYTIC
ENZYMES .. 86

5.3.1 Shake flask experiments .. 86

5.3.2 Fermentor experiments .. 87

5.4 PURIFICATION OF A PROTEASE ENZYME FROM THE B. SUBTILIS CHZ1. 88

5.4.1 Effect of nitrogen source on protease production ... 88

5.4.2 Purification of the protease enzyme ... 88

5.4.3 Properties and characterisation of the protease enzyme ... 89

5.5 CLONING OF ENDOGLUCANASE GENE OF BACILLUS SUBTILIS CHZ1 90

5.5.1 Endoglucanase amplification and cloning ... 91
5.5.2 Endoglucanase (celG) gene amplification and cloning .. 91
5.5.3 Analysis of the celG gene ... 92
5.5.4 CelG protein structure analysis ... 93
5.5.5 Expression of the CelG in E. coli host .. 94
5.5.6 Site-directed mutagenesis of CelG to improve on thermostability 95

CHAPTER 6 .. 95

6 CONCLUSIONS .. 95

CHAPTER 7 .. 98

7 FURTHER WORK ... 98

CHAPTER 8 .. 98

8 REFERENCES .. 98

APPENDIX .. 126

THESIS PUBLICATIONS ... 126
LIST OF TABLES

Table 1. Microfibril and matrix heteropolymers constituents in natural cellulose. .. 7

Table 2. Cell membrane fatty acids and lipid components of moderate and extremophile microbes. 19

Table 3. Classification of *Bacillus* strains into groups basing on phenetic and chemotaxanomic data in addition to phylogenetic information. ... 26

Table 4. World market value of enzymes of biotechnological importance by year ending 2000. .. 30

Table 5. Some of the commercial and industrial applications of enzymes from thermophilic microbes. ... 31

Table 6. Targets for proteins design and predicted mutated protein property acquired... 34

Table 7. Primers used for sequencing pBEGc3 clone and the corresponding positions on the PCR amplified fragment. .. 51

Table 8. Some of the biochemical and morphological characteristics of the *B. subtilis* CHZ1 from the Chimanimani Hot Springs, Zimbabwe. ... 56

Table 9. Effect of different carbon sources on the endoglucanase production by the *B. subtilis* CHZ1 cultivated at 40 °C and pH 6.0. .. 59

Table 10. Microbial growth and production of a protease enzyme by the *B. subtilis* CHZ1 using M162 medium supplemented with different nitrogen sources. .. 65

Table 11. Purification of an alkaline protease from the *B. subtilis* CHZ1 .. 66

Table 12. Effect of inhibitors and metal ions on the purified protease activity from a *B. subtilis* CHZ1 isolated from Chimanimani hot spring. .. 72
LIST OF FIGURES

Figure 1. Conformation of β(1,4)-glucan linkages in microfibril component showing sticking out hydroxyl groups involved in intramolecular hydrogen bonding between adjacent glucose residues .. 6

Figure 2. Cellulase enzymes involved in cellulose hydrolysis. .. 13

Figure 3. Architectural cellulase domain sequence arrangement of glycosyl hydrolase family-5A. 14

Figure 4. The proposed mechanisms of cellulose hydrolysis by glycoside hydrolases .. 15

Figure 5. The proposed mechanisms of cellulose hydrolysis by glucoside hydrolases .. 16

Figure 6. Illustrations of the phytanyl and biphytanyl hydrocarbon lipid structure of archae bacteria showing ether linkages ... 20

Figure 7. An overview of the general diversity and heterogeneity of Bacillus species illustrated by the phylogenetic tree based on 16S rRNA sequence and DNA-DNA relatedness ... 25

Figure 8. Primer walking sequencing strategy of the endo-β-1,4-glucanase gene .. 50

Figure 9. Overview of the site directed mutagenesis protocol .. 53

Figure 10. Phase contrast photomicrograph observation of the B. subtilis CHZ1 54

Figure 11. Effect of temperature on the growth rate of B. subtilis CHZ1 cultured in M162 medium. .. 57

Figure 12. Effect of initial pH on the growth of B. subtilis CHZ1 grown in M162 medium at a temperature of 40°C .. 57

Figure 13. Endoglucanase production by B. subtilis CHZ1 at a cultivation temperature of 45°C and at different initial pH values .. 58

Figure 14. Endoglucanase production by the B. subtilis CHZ1 at an initial pH of 6 (0.05 M citrate/phosphate buffer) and at different temperatures .. 58

Figure 15. Effect of different CWW medium components on the growth of the B. subtilis CHZ1 in shake flask cultivations and fermentor cultivations using CWW media; at 40°C and 50°C .. 60

Figure 16. Endoglucanase enzyme production and free reducing sugar profiles during cultivation of Bacillus strain in CWW media containing different medium components .. 61

Figure 17. Amylase and protease enzyme production by B. subtilis CHZ1 in shake flask fermentations using differently prepared CWW media .. 62

Figure 18. Polygalacturonase and xylanase enzyme production by B. subtilis CHZ1 in shake flask
fermentations using differently prepared CWW media. .. 62

Figure 19. Endoglucanase and amylase enzyme production profile by the *B. subtilis* CHZ1 in shake flasks with cultivations with differently prepared CWW media. 63

Figure 20. Xylanase and polygalacturonase production by the *Bacillus* strain in fermentor cultivations using CWW media at 40°C and 50°C. ... 64

Figure 21. Protease enzyme production by *B. subtilis* CHZ1 in fermentor cultivations using CWW media at 40°C and 50°C. .. 64

Figure 22. Purification profile of a *Bacillus* sp. protease enzyme from M162 medium culture supernatant on a S-Sepharose fast flow column after Sephadex G-50 gel filtration chromatography and freeze-drying of the pooled fractions.. 67

Figure 23. A 10 % (w/v) SDS-PAGE analysis of the purified protease enzyme using silver staining method. .. 68

Figure 24. Effect of temperature on the purified protease enzyme activity using 0.5 % (w/v) azocasein substrate prepared in 0.2 M Tris/HCl buffer pH 8.0. ... 69

Figure 25. Effect of pH on the activity of the purified protease enzyme produced by the *Bacillus* strain over a period of 5 ½ hr.. 70

Figure 26. Influence of pH on the stability of the protease enzyme. .. 71

Figure 27. Various putative plasmid clones digested with *BamH* and *HindIII* restriction enzymes... 73

Figure 28. PCR amplification of the endoglucanase gene from the *B. subtilis* CHZ1 genomic DNA.. 74

Figure 29. Schematic representation of the strategy used to clone pBEGc3 with the *celG* DNA fragment obtained by PCR amplification. ... 75

Figure 30. Nucleotide and the deduced amino acid sequence of the endo-β-1,4-glucanase from *B. subtilis* CHZ1. .. 76

Figure 31. Full length alignment of the predicted amino acid sequence of the *B. subtilis* CHZ1 cellulase and other *Bacillus* cellulases. .. 78

Figure 32. Comparison of endoglucanase production profile in *B. subtilis* CHZ1 and *E. coli* DH5α cloned with pBEc3 after cell homogenisation. .. 80
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>cellulose binding domain</td>
</tr>
<tr>
<td>CD</td>
<td>catalytic domain</td>
</tr>
<tr>
<td>CMC</td>
<td>carboxymethyl cellulose</td>
</tr>
<tr>
<td>CWW</td>
<td>chibuku waste water</td>
</tr>
<tr>
<td>DFP</td>
<td>diisopropyl fluorophosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDC</td>
<td>ethyl-(3-dimethylamine propyl) carbodiimide</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EHEC</td>
<td>ethylhydroxyethyl cellulose</td>
</tr>
<tr>
<td>FPU</td>
<td>filter paper units</td>
</tr>
<tr>
<td>HEC</td>
<td>hydroxyethyl cellulose</td>
</tr>
<tr>
<td>HPMC</td>
<td>hydroxypropylmethyl cellulose</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenyl methyl sulfonyl fluoride</td>
</tr>
<tr>
<td>PVA</td>
<td>polyvinyl alcohol</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>SCP</td>
<td>single cell protein</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate polyacrylamide gel</td>
</tr>
<tr>
<td>TLCK</td>
<td>N-p-tosyl-L-lysine chloromethyl ketone</td>
</tr>
<tr>
<td>TPCK</td>
<td>N-tosyl-L-phenylalanine chloromethyl ketone</td>
</tr>
<tr>
<td>CWW</td>
<td>Chibuku waste water</td>
</tr>
</tbody>
</table>