• Login
    View Item 
    •   UZ eScholar Home
    • Faculty of Science
    • Faculty of Science ETDs
    • Faculty of Science e-Theses Collection
    • View Item
    •   UZ eScholar Home
    • Faculty of Science
    • Faculty of Science ETDs
    • Faculty of Science e-Theses Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Maize Yield Forcasting in Malawi Using Satellite Data and a Soil Water Balance Modelling Aproach.

    Thumbnail
    View/Open
    abstract (74.91Kb)
    thesis (3.043Mb)
    appendices (3.201Mb)
    Date
    2012-09-07
    Author
    Boyce, Clement Lovemore
    Metadata
    Show full item record

    Abstract
    The potential of using Normalized Difference Vegetation Index (NDVI) and the AgroMetShell (AMS) to forecast and estimate maize yield at Rural Development Project (RDP) level in Malawi was investigated. NDVI is derived from the National Oceanic and Atmospheric Administration (NOAA) series of polar-orbiting satellites. AMS is a soil water balance water balance modeling software that produces a number of output parameters (potential yield predictors) that can be used to develop regression models for yield estimation and or forecasting. Using climatic, NDVI and yield data for the years 1983 to 2004, NDVI parameters were correlated with rainfall and yield to establish NDVI-rainfall and NDVI-yield relationships. NDVI parameters tested include cumulative, seasonal maximum, seasonal averages, dekadal and monthly increments, and dekadal and monthly values. Overall, most of the NDVI parameters tested gave little or no correlation with maize yield in most RDPs. Dekadal and monthly NDVI values were found to be positively and significantly correlated with maize yield especially towards the end of the growing season (March and April) for a number of RDPs. Regression equations were developed for only eight of the thirty RDPs in which high correlations were observed for consecutive dekads. There was no consistency in the RDPs giving high correlation from one NDVI parameter to the other. Between the hybrid and local maize varieties no variety took precedence over the others in giving higher correlations. For the few regression models developed, the coefficients of determination (r2) ranged from 0.23 to 0.54. AMS output parameters were correlated then regressed with maize yield at RDP level. Similar combinations of parameters were used for all the RDPs in a particular agroclimatological zone. Soil water deficit and actual evapotranspiration during the reproductive phases were identified to be critical in yield determination for most areas. RDPs with high values of r2 were distributed across the country but the Lakeshore and Shire Valley areas had most of the RDPs giving significant r2 values. The 1983/84 to 2001/02 seasons were used to develop regression models for maize yield estimation and forecasting. Hybrid maize regression models gave higher r2 than the local maize models. r2 values for AMS parameters and maize yield ranged between 0.08 and 0.82. For hybrid maize variety, 19 out of 30 RDPs gave r2>0.40 while for the local variety, 15 out of 30 RDPs realized r2>0.40. The standard errors for the regression models were higher for the hybrid than for the local variety. The models were tested with data from the same seasons used to develop them. In most RDPs the models simulated the yield well. Models were also tested with independent data (for 2002/03 season). In the majority of the RDPs tested, the errors of prediction fell within the standard error bands. For the eight RDPs where regressions were done for both approaches, generally the AMS-developed yield models gave higher r2 values compared to the NDVI-developed models. The AMS approach can be recommended for yield estimation and prediction in Malawi, while the NDVI approach needs further refinement before it can be implemented on an operation level.
    URI
    http://hdl.handle.net/10646/966
    Subject
    Maize
    forcating
    Maize yield
    water
    soil
    Normalized Difference Vegitation Index
    AgroMetShell (AMS)
    Malawi
    Collections
    • Faculty of Science e-Theses Collection [257]

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback
     

     

    Browse

    All of UZ eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback