STUDIES ON SEEDBED STERILISATION, DISEASE AND WEED CONTROL METHODS FOR PAPRIKA (Capsicum annuum L.) IN THE SMALLHOLDER FARMING SECTOR OF ZIMBABWE.

by

MAXWELL HANDISENI

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy.

Department of Crop Science
Faculty of Agriculture
University of Zimbabwe

2005
UNIVERSITY OF ZIMBABWE

FACULTY OF AGRICULTURE

The undersigned certify that they have read and recommend to the Department of Crop Science the thesis entitled:

STUDIES ON SEEDBED STERILISATION, DISEASE AND WEED CONTROL METHODS FOR PAPRIKA (Capsicum annuum L.) IN THE SMALLHOLDER FARMING SECTOR OF ZIMBABWE.

Submitted by MAXWELL HANDISENI in partial fulfillment of the requirements of the degree of MASTER OF PHILOSOPHY IN CROP SCIENCE (PLANT PATHOLOGY).

Approved:

Dr A.B. MASHINGAIDZE, Chairperson

Supervisor

DATE…………………………………………….
ABSTRACT

The objective of this study carried out in 2000/01, 2001/02 and 2002/03 rainy seasons in Chinyika Resettlement Area (CRA) was to develop cost effective crop protection practices in the nursery and field for paprika production. A survey carried out in CRA in 2001/02 rainy season revealed that most farmers lacked knowledge of paprika diseases identification. Ten percent of the farmers did not sterilise their seedbeds and those who did, used the method of burning of brushwood. Forty percent of the paprika farmers did not apply any fungicides for disease control during the course of production, where as among those who did, the majority sprayed only once a season. Laboratory analysis of samples taken from the farmers fields revealed that, powdery mildew (Leveillula spp) (35.6%), bacterial leaf spot (24.4%) and grey leaf spot (Stemphylium spp)(18.1%) were the major paprika diseases in CRA. Soil sterilization methods of seedbeds namely; burning of cowdung, brushwood or maize cobs, solarisation and methyl bromide were investigated. Solarisation raised soil temperatures to as high as 39.4 °C at 5cm soil depth. Burning of brushwood and cowdung treatments resulted in significantly (p<0.05) highest soil temperatures at different sites and seasons. Methyl bromide, solarisation and maize cob treated seedbeds produced seedlings of significantly (p<0.05) higher seedling dry weight than non the seedlings from non sterilized control in 2001/02. Brushwood treated seedbeds resulted in the least bacterial population at 5cm and solarisation had the least at 10cm and 15cm. Area under disease progress curve (AUDPC) for disease incidence was least (p<0.05) in the brushwood treated seedbeds. Methyl bromide and use of brushwood had a seeding emergence which was significantly (p<0.05) higher, 61% and 57.3% respectively than non sterilised control in 2001/02 season. Six fungicide spraying regimes for disease control were also investigated namely; fungicide weekly interval spray, sulphur (320g active ingredient (a.i/ha)) at 2 weeks after transplanting (WAT) and copper oxychloride (255g a.i/ha) - mancozeb (120g a.i/ha) mixture at 6WAT, spraying after scouting, alternating sulphur (320g a.i/ha) and copper oxychloride (255g a.i/ha) - mancozeb (120g a.i/ha) every two weeks, acibenzolar s-methyl (2.5g a.i/ha) and unsprayed (control). The major diseases observed in the two rainy seasons of study were bacterial leaf spot (Xanthomonas spp), cercospora leaf spot (Cercospora spp), grey leaf spot (Stemphylium spp), bacterial soft rot (Erwinia spp) and powdery mildew (Leveillula spp). Fungicide weekly sprayed plots resulted in the highest added profit of Z$75 930/ha which was not statistically different (p>0.05) from Z$59 410/ha achieved by alternating sulphur and a mixture of copper oxychloride - mancozeb mixture fortnightly in 2000/01 rainy season. There were no statistical differences (p>0.05) between spraying after scouting and acibenzolar-s-methyl application treatments. The most cost – effective disease management practice was alternating spray of sulphur and copper oxychloride-mancozeb mixture fortnightly. The effect of weed management methods on disease and yield of paprika were also investigated at two sites. The weeding treatments were; hand hoe weeding at 2 and 6 weeks after transplanting (WAT), re-ridging at 3,6 and 9 WAT, 160l a.i/ha alachlor (Lasso) a day after transplanting and a tank mixture of alachlor 80l a.i/ha and oxidadzon (Ronstar) at 96la.i/ha a day before transplanting and a no weeding treatment (control). Major weeds observed in the two seasons at both sites were; mexican clover [Ricardia scabra (L)], black jack [Bidens pilosa (L.)], stinkblaar [Datura stramonium (L)] and Apple of Peru [Nicandra physalodes (L.)]. In 2000/01 season hand weeding treatments had the lowest AUDPC disease incidence, weed density and highest marketable yield. In the 2001/02 season, both herbicide treatments had the same effect as hand weeding and re-ridging on AUDPC and marketable yield. Weed density and biomass were statistically the same across all treatments except the control in 2001/02 season. Hand weeding operations resulted in highest added profits. The use of herbicides and a supplementary hand weeding between 5-6 WAT is the best economic option for weed control.
ACKNOWLEDGEMENTS

I am indebted to the Almighty God who miraculously opened an opportunity for me to do this postgraduate study.

I express my sincere gratitude to the project supervisory committee comprising of Prof V.B Ogunlela, Mrs J.Sibiya, Dr I.Koemen and Mr D. Musambasi for their guidance, encouragement and continued interest throughout the course of this study and thesis preparation.

Mr S.Marimo, Mr N.Gachange and Mr G.Parirenyatwa for technical assistance.
Mr S.Mavengahama my fellow student for his constructive suggestions and encouragement during the course of study.

My friends particularly Mr O.Jiri and other brethren for their encouragement and prayers.
My brothers Alexander and Limbani for taking up my responsibilities whilst I was away on field trips and my mother Mrs M.Tambwari for bearing with me during my course of study.
My wife Aginella variously provided support and encouragement during the study period which I am saliently grateful.

Lastly the Forum on Agricultural Resource Husbandry programme of the Rockefeller Foundation is acknowledged with thanks for funding me and this study.
Department of Crop Science of the University of Zimbabwe for providing facilities during the study and Chinyika Resettlement Area paprika farmers for hosting my field trials.
DEDICATION

To the glory of the Almighty God who enables me to achieve all things.
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

DEDICATION

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES

CHAPTER 1

INTRODUCTION

Background and justification
- 1.1 Objectives
 - 1.1.1 Specific objectives
- 1.2 Hypothesis
- 1.3 Background to study area
 - 1.3.1 Location
 - 1.3.2 Climate
 - 1.3.3 Justification for working in CRA

CHAPTER 2

LITERATURE REVIEW

- 2.1 Background to paprika crop
- 2.2 Diseases of economic importance in Zimbabwe
 - 2.2.1 Fungal diseases
 - 2.2.2 Bacterial diseases
 - 2.2.3 Viral disease
 - 2.2.4 Disease management
- 2.3 Seedbed sterilization
 - 2.3.1 Methyl bromide
 - 2.3.2 Sterilisation using dry heat
 - 2.3.3 Biological methods of sterilization
 - 2.3.4 Soil solarisation
 - 2.3.4.1 Burn and EDB
 - 2.3.4.2 EDB/Metham sodium
 - 2.3.4.3 1, 3-dichloropropene and chloropicrin
 - 2.3.4.4 Methyl iodide
 - 2.3.4.5 Dazomet and Methyl Iothiocyanate
- 2.4 Weed management
CHAPTER 3
GENERAL MATERIALS AND METHODS

3.1 Site selection 21
3.2 Land preparation and management 21
3.3 Nursery establishment and management 22
3.4 Field trials 22
3.5 Data collection 22
 3.5.1 Disease severity score 23
 3.5.2 Disease incidence 24
 3.5.3 Disease and pathogen identification 24
 3.5.4 Weed density 25
 3.5.5 Rainfall data 26
3.6 Experimental design 28
3.7 Harvesting 28
3.8 Data analysis 28

CHAPTER 4
A SURVEY OF AN ASSESSMENT OF DISEASES OCCURING ON THE FARMERS” FIELDS, THE EXISTING LEVELS OF KNOWLEDGE ON PAPRIKA DISEASES, IDENTIFICATION AND CONTROL IN THE CHINYIKA RESETTLEMENT AREA

4.1 Introduction 30
4.2 Materials and methods 31
 4.2.1 Plant samples 31
 4.2.2 Questionnaire 32
4.3 Results 33
 4.3.1 Background and Training 33
 4.3.2 Diseases 34
 4.3.2.1 Farmers’ perceptions 34
 4.3.2.2 Cultural practices 35
 4.3.2.3 Direct observations and laboratory tests 37
4.4 Discussion 38
4.5 Conclusion 42

CHAPTER 5
ASSESSMENT OF AN AFFORDABLE AND EFFECTIVE METHOD OF SOIL STERILISATION IN PAPRIKA SEEDBEDS

5.1 Introduction 43
5.2 Materials and methods 45
 5.2.1 Methyl bromide 45
 5.2.2 Measurements of soil temperatures for the burning treatment 46
 5.2.3 Soil solarisation 46
 5.2.4 Burning 46
 5.2.5 Measurements of soil microbial population 47
 5.2.6 Disease incidence and seedling mortality 48
5.2.7 Height, dry weight of seedlings and weed density 48

5.3 Results 48

5.3.1 Soil temperatures achieved by solarisation 48

5.3.2 Soil temperatures achieved by burning cowdung, maize cobs and brushwood 50

5.3.3 Soil microbial population Assessment
 5.3.3.1 Bacteria 53
 5.3.3.2 Fungi 55

5.3.4 Seedling emergence 56

5.3.5 Seedling vigour 58
 5.3.5.1 Seedling height 58
 5.3.5.2 Seedling dry weight 58

5.3.6 Seedling disease incidence 59

5.3.7 Weed management 59
 5.3.7.1 Weed density 59

5.3.8 Seedling mortality 59

5.4 Discussion 61

5.5 Conclusions and recommendations 64

CHAPTER 6 65
DETERMINATION OF AN EFFECTIVE AND REDUCED FUNGICIDE SPRAY PROGRAMME 65

6.1 Introduction 65

6.2 Materials and methods 67

6.2.1 Economic analysis 68

6.3 Results 69

6.3.1 Disease Assessments 69
 6.3.1.1 Disease severity 69
 6.3.1.1.1 Overall AUDPC 69
 6.3.1.1.2 Percentage infection AUDPC 72
 6.3.1.1.3 Leaf spot AUDPC 73
 6.3.1.2 Disease incidence 73

6.3.2 Pod yield 74
 6.3.2.1 Number of pods per plant 74
 6.3.2.2 Total pod yield 74
 6.3.2.3 Total marketable yield 74

6.3.3 Economic analysis 78
 6.3.3.1 Yield gain 80
 6.3.3.2 Added profits 81

6.4 Discussion 81

6.5 Conclusions and recommendations 84

CHAPTER 7 86
EFFECT OF WEED MANAGEMENT ON DISEASE INCIDENCE, SEVERITY AND FINAL YIELD OF PAPRIKA 86

7.1 Introduction 86

7.2 Materials and methods 88
LIST OF TABLES

Table 4.1 List of major diseases as perceived by the farmer 32
Table 4.2 Cropping practices of paprika producers in Chinyika Resettlement Area as indicated by survey respondents 34
Table 4.3 Paprika diseases from CRA samples confirmed by laboratory tests 36
Table 5.1 The mean soil temperature recorded in the solarised and unsolarised paprika seedbeds in 2001/2002 season at Homestead and Chinyudze sites 49
Table 5.2 The mean soil temperature recorded in the solarised and unsolarised paprika seedbeds in 2002/2003 season at Homestead and Nare sites 49
Table 5.3 The number of bacterial colony forming units in 1 gramme dry soil after different soil sterilisation method at 5, 10 and 15 cm soil depths in 2001/2002 season at Homestead and Chinyudze sites 53
Table 5.4 The number of bacterial colony forming units in 1 gramme dry soil after different soil sterilisation method at 5, 10 and 15 cm soil depths in 2002/2003 season at Homestead and Nare sites 54
Table 5.5 The number of fungal colony forming units in 1 gramme dry soil after different soil sterilisation method at 5, 10 and 15 cm soil depths in 2001/2002 season at Homestead and Chinyudze sites 55
Table 5.6 The number of fungal colony forming units in 1 gramme dry soil after different soil sterilisation method at 5, 10 and 15 cm soil depths in 2002/2003 season at Homestead and Nare sites 56
Table 5.7 Paprika seedling emergence percentage, height and dry weight of paprika seedlings at Chinyudze and Homestead sites in the 2001/2002 season as influenced by sterilisation method 57
Table 5.8 Paprika seedling emergence percentage, height and dry weight of paprika seedlings at Chinyudze and Homestead sites in the 2002/2003 season as influenced by sterilization methods 59
Table 5.9 The effect of seedbed sterilisation method on Area under disease progress curve disease incidence on paprika seedling at Homestead, Chinyudze and Nare sites in 2001/2002 and 2002/2003 59
Table 5.10 The effect of seedbed sterilisation method weed density in paprika seedbeds at Chinyudze and Homestead sites in the 2001/2002 season.

Table 5.11 The effect of seedbed sterilisation method weed density 8 weeks after sowing in paprika seedlings at Homestead, Chinyudze and Nare sites in the 2002/2003 season.

Table 5.12 The effect of seedbed sterilisation method weed density at 2 and 4 weeks after sowing of paprika seedlings Nare and Homestead sites in the 2002/2003 season.

Table 6.1 Overall, percentage and leaf spot AUDPC of bacterial and fungal disease as influenced by fungicide treatments at Mhiripiri, Dengedza, Mukada and Mugadza during the 2000/2001 and 2001/2002 seasons.

Table 6.2 Total pod yield of paprika as influenced by fungicide application at Mhiripiri, Dengedza, Mukada and Mugadza during the 2000/2001 and 2001/2002 seasons.

Table 6.3 Marketable yield and added profit for frequency of fungicide spray treatment at Dengedza in 2001/2002 season.

Table 6.3 Marketable yield and added profit for frequency of fungicide spray treatment at Mugadza in 2001/2002 season.

Table 7.1 Effect of weed management on weed biomass at 5WAT in 2000/2001 and 2001/2002 at Sanhi, Mufambi and Mhiripiri sites.

Table 7.2 Effect of weed management on weed density at 5WAT in 2000/2001 and 5 and 8 WAT in 2001/2002 at Sanhi, Mufambi and Mhiripiri sites.

Table 7.3 Overall, percentage and leaf spot AUDPC of bacterial and fungal disease at Sanhi, Mufambi, and Mhiripiri sites in the 2000/2001 and 2001/2002 seasons as influenced by weed management.

Table 7.4 Plant height, pod number and total yield (with calyxes) as influenced by weed management at Sanhi, Mufambi and Mhiripiri sites in the 2000/2001 and 2001/2001 seasons.

Table 7.5 Marketable yield and added profit for different weeding method treatments at Sanhi site in the 2001/2002 rainy season.

Table 7.5 Marketable yield and added profit for different weeding method treatments, at Mhiripiri site in the 2001/2002 rainy season.
LIST OF FIGURES

Figure 3.1 Rainfall distribution in Chinyika Resettlement Area East in the 2000/2001 and 2001/2002 rainy seasons 26

Figure 3.2 Rainfall distribution in Chinyika Resettlement Area West in the 2000/2001 and 2001/2002 rainy seasons 26

Figure 4.1 Number of farmers entering into paprika production for the season 1997/1998 - 2001/2002 in Chinyika resettlement area 32

Figure 5.1 Temperatures achieved at 5cm soil depth by burning of cow dung, maize cobs and brushwood at Chinyudze site 51

Figure 5.2 Temperatures achieved at 10cm soil depth by burning of cowdung, maize cobs and brushwood at Chinyudze site 51

Figure 5.3 Temperature achieved at 15cm soil depth by burning of cowdung, maize cobs and brushwood at Chinyudze site 51

Figure 5.4 Temperatures achieved at 5cm soil depth by burning of cowdung, maize cobs and brushwood at Homestead site 51

Figure 5.5 Temperatures achieved at 10cm soil depth by burning of cowdung, maize cobs and brushwood at Homestead site 51

Figure 5.6 Temperature achieved at 15cm soil depth by burning of cowdung, maize cobs and brushwood at Homestead site 51

Figure 5.7 Temperatures achieved at 5cm soil depth by burning of cowdung, maize cobs and brushwood at Nare site 52

Figure 5.8 Temperatures achieved at 10cm soil depth by burning of cowdung, maize cobs and brushwood at Nare site 52

Figure 5.9 Temperature achieved at 15cm soil depth by burning of cowdung, maize cobs and brushwood at Nare site 52

Figure 5.10 Temperatures achieved at 5cm soil depth by burning of cowdung, maize cobs and brushwood at Homestead site 52

Figure 5.11 Temperatures achieved at 10cm soil depth by burning of cowdung, maize cobs and brushwood at Homestead site 52

Figure 5.12 Temperature achieved at 15cm soil depth by burning of cowdung, maize cobs and brushwood at Homestead site 52

Figure 6.1 Disease for Mhiripiri site in the 2000/2001 season 71

Figure 6.2 Disease progress curve for Dengedza site in the 2000/2001 rainy season 71

Figure 6.3 Disease progress curve at Mugadza site in the 2001/2002 72
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Disease progress curve at Mukada site in the 2001/2002</td>
<td>72</td>
</tr>
<tr>
<td>6.5</td>
<td>Marketable yield at Dangedza site in the 2000/2001</td>
<td>75</td>
</tr>
<tr>
<td>6.6</td>
<td>Marketable yield at Mukada site in the 2001/2002</td>
<td>76</td>
</tr>
<tr>
<td>6.7</td>
<td>Marketable yield at Mugadza site in the 2001/2002</td>
<td>77</td>
</tr>
<tr>
<td>7.1</td>
<td>Disease progress curve for Mufambi site in the 2000/2001 rainy season</td>
<td>93</td>
</tr>
<tr>
<td>7.2</td>
<td>Disease progress curve for Sanhi site in the 2000/2001</td>
<td>93</td>
</tr>
<tr>
<td>7.3</td>
<td>Disease progress curve for Sanhi site in the 2001/2002</td>
<td>94</td>
</tr>
<tr>
<td>7.4</td>
<td>Disease progress curve for Mhiripiri site in the 2001/2002 rainy season</td>
<td>94</td>
</tr>
<tr>
<td>7.5</td>
<td>Marketable yield at the Sanhi site in 2000/2001 rainy season</td>
<td>98</td>
</tr>
<tr>
<td>7.6</td>
<td>Marketable yield at the Mufambi site in the 2000/2001 rainy season</td>
<td>98</td>
</tr>
<tr>
<td>7.7</td>
<td>Marketable yield at Sanhi site in the 2001/2002 rainy season</td>
<td>99</td>
</tr>
<tr>
<td>7.8</td>
<td>Marketable yield at Mhiripiri site in the 2001/2002</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix 1: Characteristics of NRII and NRIII 123
Appendix 2: Questionnaire on farmer perception 123
Appendix 3: Potato Dextrose Agar (PDA) 126
Appendix 4: Nutrient Agar 126
Appendix 5: Gram staining method 126
Appendix 6: Oxidase reaction 127
Appendix 7: Nitrate reduction test 127
Appendix 8: Variable costs for economic analysis 129
Appendix 9: Soil temperature achieved by burning cowdung, maizecobs and brushwood at Chinyudze in 2001/2002 130
Appendix 10: Soil temperature achieved by burning cowdung, maizecobs and brushwood at Homestead in 2001/2002 130
Appendix 11: Soil temperature achieved by burning cowdung, maizecobs and brushwood at Homestead in 2002/2003 131
Appendix 12: Soil temperature achieved by burning cowdung, maizecobs and brushwood at Nare in 2002/2003 131
Appendix 13: Bacterial populations at Chinyudze in 2001/2002 132
Appendix 14: Bacterial populations at Homestead in 2001/2002 132
Appendix 15: Bacterial populations at Nare in 2002/2003 133
Appendix 16: Bacterial populations at Homestead in 2002/2003 133
Appendix 17: Fungal population in the soil at Chinyudze in 2001/2002 134
Appendix 18: Fungal population in the soil at Homestead in 2002/2003 134
Appendix 19: Seedling emergence at Chinyudze in 2001/2002 135
Appendix 20: Seedling height at Chinyudze in 2001/2002 135
Appendix 21: Weed density at 2WAS at Homestead in 2001/2002 135
Appendix 22: Weed density at 4WAS at Homestead in 2001/2002 135
Appendix 23: Weed density at 8WAS at Homestead in 2001/2002 136
Appendix 24: Weed density at 2WAS at Chinyudze in 2001/2002 136
Appendix 25: Weed density at 8WAS at Chinyudze in 2001/2002 136
Appendix 26: Overall AUDPC at Dengedza in 2000/2001 136
Appendix 27: Overall AUDPC at Mugadza in 2001/2002 137
Appendix 28: Percentage infection AUDPC at Mugadza in 2001/2002 137
Appendix 29: Total marketable yield at Dengedza in 2000/2001 137
Appendix 30: Total marketable yield at Mugadza in 2001/2002 137
Appendix 31: Standardised AUDPC for Dengedza in 2000/2001 138
Appendix 32: Yield gain over non-sprayed at Dengedza in 2000/2001 138
Appendix 33: Added profit at Dengedza in 2000/2001 138
Appendix 34: Standardised AUDPC for Mugadza in 2001/2002 138
Appendix 35: Weed density at 5WAT at Sanhi in 2000/2001 139
Appendix 36: Weed density at 17WAT at Sanhi in 2001/2002 139
Appendix 37: Weed biomass at 17WAT at Sanhi in 2001/2002 139
Appendix 38: Weed density at 5WAT at Mhiripiri in 2001/2002 139
Appendix 39: Overall AUDPC at Mufambi in 2000/2001 140
Appendix 40: Overall AUDPC at Sanhi in 2001/2002 140
Appendix 41: Overall AUDPC at Mhiripiri in 2001/2002 140
Appendix 42: Percentage AUDPC at Sanhi in 2001/2002 140
Appendix 43: Percentage AUDPC at Mhiripiri in 2001/2002 141
Appendix 44: Leaf spot AUDPC at Sanhi in 2001/2002 141
Appendix 45: Leaf spot AUDPC at Mhiripiri 2001/2002 141
Appendix 46: Plant height at Mhiripiri in 2001/2002 141
Appendix 47: Pod number per plant at Mhiripiri in 2001/2002 142
Appendix 48: Pod number per plant at Sanhi in 2001/2002 142
Appendix 49: Total yield with calyx at Sanhi in 2000/2001 142
Appendix 50: Total yield with calyx at Mhiripiri in 2001/2002 142
Appendix 51: Total marketable yield at Sanhi in 2000/2001 143
Appendix 52: Total marketable yield at Sanhi in 2001/2002 143
Appendix 53: Total marketable yield at Mhiripiri in 2001/2002 143
Appendix 54: Standardised AUDPC at Sanhi in 2001/2002 143
Appendix 55: Yield gain at Sanhi in 2001/2002 144
Appendix 56: Added profit at Sanhi in 2001/2002 144
Appendix 57: Standardised AUDPC at Mhiripiri in 2001/2002 144
Appendix 58: Yield gain at Mhiripiri in 2001/2002 144
Appendix 59: Added profit at Mhiripiri in 2001/2002 144