TYPE 2 DIABETES MELLITUS IN BLACK ZIMBABWEANS -
METABOLIC FACTORS AND MOLECULAR GENETICS

By

DAVID MAKUYANA

A THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY (D.Phil)

DEPARTMENT OF CHEMICAL PATHOLOGY
COLLEGE OF HEALTH SCIENCES
UNIVERSITY OF ZIMBABWE
FEBRUARY 2004
This work is dedicated to my family, Bongi, Ntando and Thoko, to my mum Joyce, and to my vibrant grandma, Mildred Ficeya. I hope that day is nigh, when genetic aberrations and environmental insults that trigger the metabolic programming of the derangements in multifactorial disorders, such as diabetes mellitus, will be routinely diagnosed and managed.
CHAPTER 1: INTRODUCTION

1.1 Background of diabetes mellitus in Zimbabwe and in developing countries 1

1.2. Diabetes mellitus 3

1.3. Type 2 diabetes mellitus and the metabolic syndrome 7

1.3.1. Insulin resistance and hyperinsulinaemia 10

1.3.2. Dyslipidaemia 14

1.3.3. Obesity 23

1.3.4. Microalbuminuria 27

1.3.5. Hypertension 29

1.4. Metabolic genes in type 2 diabetes mellitus 32

1.4.1. Genetic polymorphism 33

1.4.2. Apolipoprotein E gene polymorphism 35

1.4.3. Angiotensin converting enzyme gene polymorphism 43
1.4.4. Tumour necrosis factor alpha gene polymorphism 45
1.5. Polymerase chain reaction technique 48
1.6 Polymerase chain reaction and detection of DNA polymorphisms 52
1.7. Justification, hypothesis and objectives of the study 53

CHAPTER 2: MATERIALS AND METHODS

2.1. Ethical issues 57
2.2. Subjects 57
2.3. Blood Pressure measurements 58
2.4. Blood and urine specimen collection 59
2.5. Data collection 59
2.6. Anthropometric measurements 59
2.7. Specimen preparation and storage for biochemical assays and DNA studies 60
2.8. Genomic DNA extraction and quantitation 61
2.9. Molecular biology grade reagents for DNA extraction 64
2.10. Solutions for DNA extraction 64
2.11.1. Plasma Glucose 65
2.11.2. Serum creatinine 65
2.11.3. Serum urea
2.11.4. Serum urate
2.11.5. Serum lipids
2.11.6. Plasma insulin
2.11.7. Urinary albumin
2.11.8. Insulin resistance

2.12. Classification criteria of participants from anthropometric, blood pressure and biochemical results

2.13. Genetic methods
2.13.1. Apolipoprotein E gene amplification and RFLP analysis
2.13.2. Angiotensin converting enzyme gene amplification and RFLP Analysis
2.13.3. Tumour necrosis factor alpha gene amplification and RFLP Analysis

2.14. Criteria for electrophoretic identification and interpretation of the various PCR amplification products
2.14.1. Apolipoprotein E gene
2.14.2. Angiotensin converting enzyme gene
2.14.3. Tumour necrosis factor alpha gene

2.15. Quality assurance measures

2.16. Statistical analysis
CHAPTER 3: RESULTS AND DISCUSSION - Metabolic components

3.1. Demographic and metabolic analyses 82

3.2. Discussion 91

3.2.1. Metabolic syndrome factors 91

3.2.2. Hypertension 91

3.2.3. Hyperuricaemia and microalbuminuria 93

3.2.4. Obesity 96

3.2.5. Dyslipidaemia 97

3.2.6. Insulin resistance and hyperinsulinaemia 99

CHAPTER 4: RESULTS AND DISCUSSION - Apolipoprotein E gene polymorphism

4.1. Genotype and allelic frequencies 101

4.2. Biochemical assays, anthropometric and blood pressure features according to apoE genotypes 104

4.3. Discussion 109

4.3.1. General introduction 109

4.3.2. Apolipoprotein E gene polymorphism 109
CHAPTER 5: RESULTS AND DISCUSSION - Angiotensin converting enzyme gene polymorphism

5.1. Genotype and allelic frequencies 117

5.2. Biochemical assays, anthropometric and blood pressure features according to ACE genotypes 120

5.3. Discussion 122

CHAPTER 6: RESULTS AND DISCUSSION - Tumour necrosis factor alpha gene polymorphism

6.1. Genotype and allelic frequencies 131

6.2. Biochemical assays, anthropometric and blood pressure features according to TNF-alpha genotypes 134

6.3. Discussion 136

CHAPTER 7: CONCLUSION 142

REFERENCES 150