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Abstract 

The aim of this study was to explore the use of geostatistical approaches involving remote 

sensing data to model and map soil nitrogen variability for use in precision agriculture. 

Precision agriculture is a management strategy aimed at reducing the costs of nitrogen 

fertilizers by matching site-specific nutrient applications with crop requirements and soil 

properties as both vary across a field. The study was conducted on a 4-hectare plot at the 

University of Zimbabwe farm in Zimbabwe. Three prediction models were applied to 

estimate soil nitrogen variability within the plots and these included; (1) Ordinary kriging 

with sample nitrogen data only, (2) Ordinary co-kriging with sample nitrogen and remotely 

sensed data as covariate data, and (3) spatial regression with remotely sensed data only. 

Landsat 8 was used as a source of remotely sensed data. Results showed that the 

Coastal/Aerosol, Blue and NIR spectral bands were highly correlated to soil nitrogen, and 

produced good prediction models in co-kriging with R
2
 values of 0.8593, 0.8606 and 0.8596 

respectively. Ordinary kriging with nitrogen sample data alone also yielded similar results 

with R
2
 value of 0.8597. Finally, spatial regression analysis (SAR lag model) using the same 

spectral bands yielded R
2
 values of 0.527, 0.517 and 0.545 respectively while the other 

bands like Red, SWIR-1 and SWIR-2, and indices like NDVI, RVI and SAVI yielded values 

below 0.5. Comparison of the three prediction models indicated that there was no significant 

difference in the mean prediction values of the models. Thus, the results suggest that 

remotely sensed data can successfully be used alone and in combination with field sample 

data to model and map soil nitrogen variability in soils. 
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Chapter 1. Introduction  

1.1 Background 

Nitrogen is a major limiting macro-nutrient in many agro-systems. Nitrogen helps plants 

grow quickly, while also promoting the production of seeds and fruits, and enhancing the 

quality of leaf and forage crops. This is because nitrogen is an important component of 

chlorophyll and helps in the process of photosynthesis (Lines-Kelly, 1992). Plants 

adequately fed with nitrogen are large and dark green. Nitrogen is generally the most 

deficient nutrient in soils (Hughes & Venema, 2005). Thus, understanding the distribution of 

nitrogen is critical in agronomic management strategies. 

 

The deficiency of nitrogen in soils and the high cost of the nitrogen fertilizers have led to the 

development of new approaches to farming, for example precision farming. In precision 

agriculture, the aim is to match site-specific resource applications and agronomic practices 

with soil properties and crop requirements as they vary across a field (Tayari, Jamshid, & 

Goodarzi, 2015). Fertilizer costs, especially nitrogen fertilizers contribute a greater 

percentage of farming costs incurred by farmers.  Thus, any approach that allows farmers to 

apply the right quantities of nitrogen in the right place at the right time may help to improve 

productivity by decreasing fertilizer costs. This also helps in reduction of environmental 

contamination resulting from over application of nitrogen fertilizers (Papadopoulos, 

Papadopoulos, Tziachris, Metaxa, & Iatrou, 2014). In this regard, the development of 

methods for estimating the spatial distribution of nitrogen in soils is critical. 

 

The development of Geographic Information Science (GIS), Global Positioning Systems 

(GPS) and remote sensing technology has improved the possibility to map the spatial 

variations of critical nutrients such as nitrogen in fields thereby improving the prospects of 

practicing precision agriculture (Omran, 2012). However, methods of estimating the spatial 
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distribution of nitrogen in soils using these technologies are still under development. To this 

end, continued research on the development of GIS and remote sensing based approaches to 

estimating nitrogen distribution is important.  

 

1.2. Statement of the Problem 

Traditional soil mapping is based on soil sampling and laboratory analysis, which are 

expensive, slow and labour intensive (Rossel, Walvoort, McBratney, Janik, & Skjemstad, 

2006). The majority of available digital soil maps are based on paper maps that were 

digitized into vector-based polygon maps (Thompson, Roecker, Grunwald, & Owens, 2012). 

The major limitations of these maps are that; they are static and they represent soil 

information as polygons (entity model). This spatial and attribute generalization of soil 

spatial variation into distinct classes makes soil survey information incompatible with other 

forms of continuous spatial data (Thompson et al., 2012). Therefore, most of the existing 

soil databases are not exhaustive and precise enough to promote extensive and credible use 

of soil information (Lagacherie & McBratney, 2006) particularly for precision agriculture 

applications.  

 

In Zimbabwe, previous studies in mapping soil variability mainly focused on predicting 

nitrogen concentration in plants (Zengeya, Mutanga, & Murwira, 2013). Studies carried out 

at the University of Zimbabwe by Francisca Kunedzimwe (2015) established a relationship 

between soil nitrogen and remotely sensed data (NDVI). However, no models were 

developed for use in mapping and predicting soil variability for use in future and in areas 

with similar soils. Thus, continuous mapping of the spatial variability of soils using 

Geographic Positioning System (GPS) and remote sensing in combination with other 
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auxiliary data should be explored extensively to reduce the costs of field sampling and 

laboratory analysis while improving accuracy of soil information.  

 

1.3 Objectives of the study 

To develop a digital soil nutrient map showing spatial variability of Nitrogen using a 

combination of field soil samples, laboratory analysis and remote sensing data 

i. To develop a suitable geostatistical model for predicting spatial variability of 

available soil nutrients. 

ii.  To test whether remotely sensed data can successfully be deployed to map soil 

nutrients, alone and in combination with ancillary data. 

iii.  To determine spatial variability of soil nitrogen in the UZ farm fields. 

 

1.4 Justification of the study 

Existing soil maps are mainly based on traditional soil surveys and little research has been 

done on digital soil mapping using modern methods, especially at local scales. Therefore, 

with the advent of GIS, GPS and remote sensing technology, we intend to develop models to 

predict and map spatial variability of soil nutrients in a quicker and cost effective way. 
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Chapter 2. Materials and Methods 

2.1 Study Area 

The study area is a 4-hectare plot in one of the fields at the University of Zimbabwe Farm 

(Thornpark Estate). It is a farm in Teviotdale, Mazowe District, and north of Harare in 

Zimbabwe. The farm lies approximately eight kilometres from the University of Zimbabwe, 

Mount Pleasant Campus along the Mazowe Road. It is 1636 hectares in extent. The study 

area is predominantly para-fersialitic soils or Black soils (Vincent, Thomas, & Staples, 

1960). 

 

Figure 1.  Location of the study area (University of Zimbabwe Farm) 

2.2  Downloading of Remote Sensing Images 

We downloaded Landsat 8 images (path/row, 170/72) for 6 January 2016 and used them as a 

source of remote sensing data for this study (http://glovis.usgs.gov). Landsat 8 comprises 

eleven spectral bands ranging from Coastal/Aerosol; 0.435 - 0.451, Blue; 0.452 ï 0.512,  



5 
 

Green; 0.533 -0.590, Red; 0.636 ï 0.673,  Near Infra-Red (NIR); 0.851 -0.879, Short Wave 

Infra-Red-1 (SWIR-1); 1.566 ï 1.651,  SWIR-2; 2.107 ï 2.294,  Pan; 0.503 ï 0.676,  Cirrus; 

1.363 ï 1.384,  Thermal Infrared-1 (TIR-1); 10.60 ï 11.19,  to TIR-2; 11.50 ï 12.51. We did 

pre-processing of the images by converting level 1 DN values to Top of the Atmosphere 

(TOA) reflectance using QGIS software (Hugentobler, 2008). We then calculated the 

Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI) and Soil-

Adjusted Vegetation Index (SAVI) and added them to the spectral bands of the images. We 

used the fields around the experimental plot to clip the Landsat images for use in data 

analysis.  

 

Figure 2.  Landsat 8 Spectral Image for the experimental fields 
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2.3 Field Sampling 

We marked 36 sample points at the centre of each pixel on a regular grid (square lattices) at 

30m interval within the experimental plot. We then used a handheld GPS to navigate to the 

geo-referenced sample points. Next, we took soil samples using a soil auger from 25cm deep 

holes. On each sampling point, we took 5 cores on a 2x2m square box, mixed the soil 

thoroughly in a plastic bucket and then took a representative sample for laboratory analysis 

(http://www.cropnutrition.com/efu-soil-sampling). 

 

Figure 3.  Field Sampling design 

2.4 Laboratory analysis 

We air dried the samples and put them into an oven, and then heated them for 48 hours at 

104
o
c until they reached a constant mass. We analysed the soil samples for Nitrogen using 

the Kjeldahl method (Bremner et al., 1996), which is divided into three phases. The first 

phase is the Digestion phase, where the soil samples were digested using concentrated 

sulphuric acid in the presence of catalysts (potassium sulphate and cupric sulphate). The 

second stage is the distillation phase where ammonia was distilled and collected in an acid 

2X2m plot 
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solution. The third and final phase is the titration phase, where the excess acid is titrated 

against a standard alkaline solution (sodium hydroxide) using Methyl red indicator. We then 

performed blank test in order to make the necessary adjustments. We calculated Nitrogen 

concentration using the formula; 1 ml of 0.05 mol/l sulfuric acid = 1.4007 mg of Nitrogen.   

  

2.5 Analysis of Soil Sample data 

We applied three prediction models to estimate soil nitrogen variability within the 

experimental plot and these were;  

(1) Ordinary kriging with sample nitrogen data only,  

(2) Ordinary co-kriging with sample nitrogen and remotely sensed data as covariate data and  

(3) Spatial regression with remotely sensed data only. The three models were then compared 

for their validity in predicting soil nitrogen.  

 

Before we used the data in correlation, regression and geostatistical analysis, we first tested 

for normality as one of the basic assumptions required for statistical analysis to give valid 

results. We performed the Shapiro-Wilk tests, and we left out all the variables which failed 

to pass the normality tests in further analysis. We also performed tests for spatial 

autocorrelation and cross-correlation as exploratory techniques to decide whether we should 

use spatial modeling. We did Univariate and bivariate Moranôs I tests using GeoDa software 

(Anselin, Syabri, & Kho, 2006). We did correlation analysis also as a measure of the 

strength of the relationship between the two variables X (soil Nitrogen) and Y (Landsat 

spectral data). We also applied GS-plus software to estimate the best fitting model for the 

variograms using the R
2
 values.  
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2.5.1 Geostatistical Analysis: Kriging and co-kriging  

We applied a geostatistical analysis procedure in ArcGIS software (Mitchell, 1999) in the 

prediction and mapping of soil nitrogen levels in the experimental plot. Ordinary Kriging 

and Co-kriging were applied as interpolation techniques for the soil nitrogen concentration 

in the experimental plot using soil sample nitrogen, and spectral bands and indices as 

covariate data. 

 

2.5.1.1 Kriging Model 

We used ordinary kriging with sample nitrogen alone to predict nitrogen concentration in the 

experimental plot. Ordinary kriging was preferred to other kriging methods like simple, 

collocated and indicator kriging mainly because it estimates the mean locally within a set of 

neighborhood control points rather than assuming a globally constant mean. During the 

process of kriging, sample data was divided into test dataset and training dataset. The 

training dataset was then used to develop the trend and autocorrelation models used for 

prediction. The Geostatistical Analyst produced a scatter plot of predicted values (Blue line) 

vs true values (red line) with the prediction equation and the prediction error statistics. 

However, kriging tends to under-predict larger values and over-predict small values. 

 

2.5.1.2  Co-kriging  model 

We used ordinary co-kriging with sample nitrogen and remote sensing data to predict 

nitrogen levels in the experimental plot. We also used the semi-variogram of sample 

nitrogen and cross-variograms of spectral bands and indices to model and map the spatial 

distribution of nitrogen in the experimental plot. Co-kriging as a spatial modelling technique 

was used as it exploits covariate data (Lesch, Strauss, & Rhoades, 1995).  It is the most 

rigorous and versatile statistical technique for spatial point estimation when both the primary 

and secondary (covariate) attributes are available in a data-set (Lesch et al., 1995). We also 
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used co-kriging analysis to improve the estimation of the spatially dependent primary 

variable by incorporating correlated covariate data. The model calculates predictions for a 

poorly sampled variable (the predictand) with the help of a well-sampled variable (the co-

variable). The two major advantages of co-kriging are; (1) It reduces the cost of soil nutrient 

analysis by reducing the data requirement for the primary variable (which is expensive to 

measure) and improves the precision of estimation (Han, Schneider, & Evans, 2003), and  

(2) It yields an equation that can always be used in future for mapping soil variability for 

that area without taking many soil samples. 

 

In this model we used the p-covariate co-kriging estimator which can be represented as  

follows (Lesch et al., 1995): 

     
                  i=I                       k=l,   j=I 

Where Ŭi, are the weights applied to the n surrounding ɛ of nitrogen samples and ɚjk are the 

weights applied to the m surrounding ᾇjk of spectral data. In order to estimate the optimal 

weights in the above equation, we first specified a joint model for the matrix of covariance 

function. This included a model of the primary variogram (sample nitrogen concentration), 

secondary variograms (spectral bands and indices), and all pairwise cross-variograms. 

Therefore, we used semi-variograms and covariance data (cross-correlation), so the sample 

nitrogen data and the remotely sensed data had to be correlated (Lesch et al., 1995).  

 

2.5.1.3.1 Validation of the kriging models 

To validate the models, for prediction errors that are unbiased (centred on true values), we 

looked for the following conditions; (1) The Mean prediction error was expected to be near 

zero, and average standard errors similar to the root-mean-squared prediction error (If the 
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average standard error is greater than root mean squared prediction error, there will be over-

estimation of the variability of predictions and if it is less, there will be underestimation).  

(2) The root-mean-squared standardised error was expected to be near 1 (If it is greater than 

1, underestimation is occurring and if less than 1, overestimation is occurring), and the 

Standardized mean prediction error near 0. We also used the co-efficient of determination 

value (R
2
) from the cross-validation scatter plot as an indicator of the model fit. 

 

2.5.2 Spatial Regression Analysis. 

We applied spatial regression analysis in order to demonstrate the degree to which Landsat 

data potentially promotes positive or negative change in soil sample nitrogen. We used the 

Simultaneous Autoregressive (SAR) model with a spatially lagged version of the dependant 

variable (SAR lag model) (Anselin et al., 2006) . We applied óspatial lagô model approach for 

spatial regression analysis so that we could account for the spatial dependency in the data.  

We used GeoDa software for this analysis (Anselin et al., 2006). From the analysis, the p-

values were used to indicate whether the Landsat bands and indices were significant 

predictors of the soil sample nitrogen. We used the R
2
 values to measure how well the 

regression lines produced from the regression models fit ted in the data. It indicates the 

proportion of variability in the dataset that the regression equation accounted for.  

 

2.5.3  Comparison of prediction models. 

We used the Paired-Sample T-Test to compare means of the predicted soil nitrogen to see if 

the means were significantly different from each other and from the measured soil nitrogen 

(Spatz, 2007). 
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Chapter 3. Results 

3.1 Normality test. 

Results of Shapiro-Wilk tests show that soil sample (nitrogen levels) data, the Green and 

Pan spectral band data values were not normally distributed (p<0.05) and were excluded, 

therefore these bands have not been considered for further analysis.  However, the soil 

sample nitrogen data was transformed to the square root of the nitrogen concentration 

(Sqrt(%N)) to create normally distributed sample data. The vegetation indices (NDVI, RVI 

and SAVI), and the rest of the Landsat 8 bands (Coastal/Aerosol, Blue, Red, NIR, SWIR-1 

and SWIR-2) exhibited normally distributed data (Table 1).  

Table 1. Summary of results from Shapiro-Wilk tests for normality. 

Shapiro-Wilk  

 Statistic  (d.f.) Significance Level 

Nitrogen 0.191 36 *0.00134 

Sqrt(Nitrogen) 0.148 36 0.05007 

NDVI 0.097 36 0.73849 

RVI 0.105 36 0.28957 

SAVI 0.093 36 0.71992 

Coastal 0.114 36 0.14334 

Blue 0.119 36 0.30679 

Green 0.157 36 *0.00286 

Red 0.133 36 0.21187 

NIR 0.109 36 0.17252 

SWIR1 0.122 36     0.95899 

SWIR2 0.070 36 0.93152 

Pan              0.106 36            * 0.04315 

*indicate variables with p-values that are significant (< 0.05) 
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3.2 Spatial Correlation analysis 

The Moranôs I tests results show that all the variables tested (including the soil sample 

nitrogen) were spatially auto-correlated and had some degree of correlation with soil 

nitrogen concentration ranging from -0.06 to 0.18. The Coastal/Aerosol and Blue bands had 

higher positive correlations with sample nitrogen while lower positive correlations were 

observed for the red, NIR and the spectral indices (NDVI, RVI and SAVI). The SWIR (1 

and 2) bands showed negative correlations (Table 2). 

Table 2.  Summary of Spatial Autocorrelation and Correlation Test Results 

Variable Moranôs I (Univariate)           

Spatial Autocorrelation 

Moranôs I (Bivariate - Lagged 

SqrtN) Correlation  

Sqrt(%Nitrogen)  0.399932 - 

NDVI     0.294367 0.0212893 

RVI  0.264993 0.0391701 

SAVI 0.225884 0.0503687 

Coastal band (B1) 0.372981 0.150773 

Blue band (B2) 0.398504 0.179111 

Red band (B4) 0.440292 0.0403507 

NIR band (B5) 0.150006 0.0871496 

SWIR_1 band 

(B6) 

0.141274 * -0.09736 

SWIR_2 band 

(B7) 

0.14833 * -0.0636065 

* Indicates negative spatial auto-correlation 

Bold ï indicates variables which have a relatively high positive correlation 

3.3 Modelling and Mapping soil spatial variability in Nitrogen using kriging and co-

kriging models. 

 

Using GS-plus software to determine the best fitting variogram model, we discovered that 

Gaussian had the highest R
2
 value of 0.768 while Exponential, Spherical and linear models 

had R
2
 values of 0.719, 0.727 and 0.738 respectively. We therefore employed the Gaussian 

model for kriging and co-kriging using the geostatistical analyst wizard in ArcGIS. Figures 

4, 5 and 6 show the semi-variograms and cross-variogram used in the kriging and co-kriging 
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predictions using sample nitrogen and remotely sensed data (Blue band). Appendix 1 shows 

the cross-variogram models for the sample nitrogen and spectral data, semi-variogram and 

cross-validation models for the co-kriging techniques. Appendix 4 shows the cross-

variograms of the other spectral bands and vegetation indices.  

3.3.1 Variograms for the kriging and co-kriging models. 

Figure 4 Semi-variogram for the soil sample Nitrogen (Sqrt(% N)). 

Semi-variogram model for sample N: 0.00096304*Nugget+0.025403*Gaussian(300) 

 

Figure 5 Semi-variogram for the Blue band. 

Semi-variogram model for Blue band: 0.0000006657*Nugget+0.0000063056*Gaussian 

(300) 
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Figure 6 Cross-Variogram for Soil Sample Nitrogen (Sqrt(%N)) and Blue Band. 

Cross-variogram model for Nitrogen and Blue band: 0.000037643*Gaussian (300). 
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3.3.2 Nitrogen Variability Maps  

The soil nitrogen variability maps generated from kriging and co-kriging models are as shown in figure 7 below. The predicted soil nitrogen 

levels in the experimental plot ranged from 0.140214 (0.19655997% N) to 0.481851 (0.23218038% N) with the Co-Kriging (Nitrogen and Blue 

band) and kriging models. The measured soil nitrogen concentration also ranged from 0.01966 to 0.23218% N. Appendix 5 shows the nitrogen 

variability maps generated from the rest of the spectral bands and indices. 

       

       (a) Krig ing Map for Nitrogen only (Sqrt(%N)).              (b) Co-kriging Map for Nitrogen (Sqrt(%N)) and Blue band.  

Figure 7 Nitrogen Variability Maps for Nitrogen and Blue spectral band   
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3.3.3 Validation of the kriging and co-kriging models 

The spectral bands and indices yielded R
2
 values ranging from 0.8593 with Coastal/Aerosol band to 0.8606 with the blue band using co-kriging 

model (Appendix 2). The kriging model had an R
2
 value of 0.8597. Prediction error values ranged between 0.0124167 and 0.074062 for the Co-

kriging model, and between 0.0124201 and 0.0741184 for the kriging model, so prediction error was slightly lower in co-kriging than in kriging 

model. Appendices 6 and 7 display the Prediction Standard Error maps and scatter plots from the cross-validation of the predicted soil nitrogen 

from co-kriging model using the other spectral bands and indices.  

         

(a) The Prediction Standard Error map for Kriging (N only)    (b) Cross-validation graph for Kriging (N only) 

Figure 8 Prediction Error Map and Cross-Validation Scatter plot for Kriging model  

Prediction Model Equation: 0.885061 * x + 0.0328238 
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(a) The Prediction Standard Error map for Co-kriging (N & Blue band)  (b) Cross Validation Graph for Co-kriging (N & Blue band) 

Figure 9.  Prediction Error Map and Cross-Validation Scatter plot for Co-kriging model 

Prediction Model Equation:  0.885906 * x + 0.0325518 
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3.4  Spatial Regression Analysis 

Table 3 is a summary of regression analysis using the spatial lag model. Results show that spectral bands like Red, SWIR-1 and SWIR-2 and 

indices like NDVI, RVI, SAVI had some parameters in their models that were not statistically significant, so the models have been excluded. Only 

three spectral bands namely; Coastal/Aerosol, Blue and NIR had regression models with statistically significant parameters and  had co-efficient of 

determination (R
2
) values of that were above 0.5 (i.e. 0.527489, 0.516529 and 0.544532 respectively).  Since the  blue band was used as the best 

model in co-kriging, we also considered this band for the spatial regression for comparison with other models.  

 

Therefore, the prediction regression equation for Blue spectral band is;  

Y = 0.589832 *w_sqrt(N) +24.08915 *Blue band - 1.885176 

where w_sqrt(N) is the weight matrix for the sample nitrogen data. 
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Table 3 Spatial Regression Summary for Nitrogen and different spectral bands and indices 

Variable Weight 

co-

efficient 

(SqrtN) 

P-value Constant P-value Co-efficient  

of the 

variable 

P-

value 

R
2
 Lag Co-

efficient 

parameter 

(Rho) 

Spatial 

dependence 

Test 

(Likelihood 

Ratio 

Value) 

P-value 

NDVI  0.6542466   0.00000 -0.1509646 0.19087 0.5033403 *0.02992 0.447246 0.654247 12.4492 *0.00042 

RVI  0.6500744 0.00000 -0.0946063 0.27822 0.0645211 *0.02125 0.454055 0.650074 12.3615 *0.00044 

SAVI 0.6556411 0.00000 -0.147973 0.09826 0.8339719   *0.00483 0.489258 0.655641 12.9427 *0.00032 

Coastal 0.6095748 0.00000 -2.968674 *0.00087 31.05128   *0.00065 0.527489 0.609575 11.4853 *0.00070 

Blue 0.589832   0.00001 -1.885176   *0.00144 24.08915   *0.00090 0.516529 0.589832 10.5502 *0.00116 

Red 0.6366076 0.00000 0.1626375 0.34798 -0.711630   0.72613 0.368777 0.636608 11.1148 *0.00086 

NIR 0.6521997 0.00000 -0.3534357 *0.00448 1.842765 *0.00026 0.544532 0.6522 13.4736 *0.00024 

SWIR-1 0.6274292   0.00000 0.3333856   0.54451 -1.119086 0.67921 0.366373 0.627429 10.6899 *0.00108 

SWIR-2 0.6322089   0.00000 0.4721092 *0.03711 -2.783881 0.09570 0.410741 0.632209 11.2961 *0.00078 

  *indicate variables with p-values that are significant (< 0.05) 

  Bold ï indicate R
2
 values above 0.5 
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3.5 Comparison of the Prediction Models 

The summary statistics show that the mean nitrogen levels in the experimental field ranged from 0.2842 (0.0808%N) in measured soil samples, 

0.2844 (0.08088%N) in co-kriging model (N and Blue band), 0.2845 (0.08094%N) in kriging model (nitrogen only) to 0.286 (0.81796%N) in 

spatial regression model (using Blue band only) (Appendix 3). The t-Test for Paired-Samples designs show that there was no statistically 

significant difference (p>0.05) between the measured sample mean and the means of the three prediction models (i.e. 0.899, 0.973 and 0.978 with 

the regression, Co-kriging and kriging prediction models respectively). There was also no significant difference between mean values of prediction 

models (i.e. 0.899 for regression and co-kriging, 0.897 for regression and kriging, and 0.814 for co-kriging and kriging models) (Table 4).  

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

 Table 4 The t-Test for paired sample designs 

 * Indicates p-values greater than 0.05 (p>0.05) 

 

 

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence 

Interval of the 

difference 

Lower Upper 

Pair 1 Measured N ï Predicted N (Regression) -0.001798 0.084029 0.014005 -0.030229 0.026634 -0.128 35 *0.899 

Pair 2 Measured N ï Predicted N (Kriging with N & Blue  

band) 

-0.000214 0.037106 0.006184 -0.012769 0.012340 -0.035 35 *0.973 

Pair 3 Measured N ï Predicted N (Kriging with N alone) -0.000172 0.037236 0.006206 -0.012771 0.012427 -0.028 35 *0.978 

Pair 4 Predicted N (Regression) -  Predicted N (Kriging with N 

& Blue band) 

0.001583 0.074526 0.012421 -0.023633 0.026799 0.127 35 *0.899 

Pair 5 Predicted N (Regression) -   Predicted N (Kriging with  

N alone) 

0.001626 0.074974 0.012496 -0.023742 0.026993 0.130 35 *0.897 

Pair 6 Predicted N (Kriging with N & Blue band) -  Predicted N 

(Kriging with N alone) 

0.000042 0.001075 0.000179 -0.000321 0.000406 0.237 35 *0.814 
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Chapter 4. Discussion and Conclusion 

4.1 Discussion 

The results from this study indicate that remote sensing data  in combination with sampled 

soil nitrogen data can successfully be used to model and map soil nitrogen variation in soils 

at local scales. The Coastal/Aerosol, blue and NIR spectral bands exhibited strong 

correlations with sample nitrogen  in addition to having  the best cross-variograms. This was 

consistent with previous research which also showed that a combination of yellow, coastal 

blue and blue spectral bands of the WorldView-2 multispectral data exhibited strong 

correlations with field  nitrogen concentrations (forage quality) (Zengeya et al., 2013).  

 

Co-kriging results indicate that all the spectral bands and indices used in this study produced 

good prediction models with R
2
 values ranging from 0.8593 to 0.8606. The blue band which 

had the highest R
2
 value of 0.8606 was selected as the spectral band with the best model. 

Kriging on the other hand had R
2
 value of 0.8597. Consistent with previous studies, it can be 

noted that co-kriging techniques can produce better estimates than kriging especially if the 

cross-variograms are accurately defined with sufficient sample data (Han et al., 2003) & 

(Ersahin, 2003). Co-kriging can take advantage of high correlation existing between the 

primary variable and the secondary (auxilliary) variable to improve the accuracy of 

prediction (Eldeiry & Garcia, 2010). Thus, one can deduce that co-kriging can successfully 

be applied to model and map soil nitrogen variability with improved accuracy. 

 

The spatial regression results produced models with co-efficients of determination (R
2
) 

values that were lower than those obtained in kriging and co-kriging models. This was 

consistent with previous studies which also found that co-kriging performed better than  

spatial regression modelling when predicting soil total nitrogen in China (Wang, Zhang, & 

Li, 2013). However, we still found the Coastal/Aerosol, blue and NIR spectral bands 
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yielding higher R
2
 values (0.527, 0.517 and 0.545 respectively) which was consistent with 

the results obtained when using the co-kriging modelling technique. This consistency can be 

explained by the higher correlation that exist between each of the three spectral bands 

(Coastal/Aerosol, blue and NIR) and nitrogen compared to the rest of the spectral bands and 

indices. The spatial regression model  used in this study is a promising interpolation model 

for mapping and predicting soil nitrogen using remotely sensed data. Thus, from these 

results we deduce that remotely sensed data can be used alone and in combination with soil 

sample nitrogen data to model and map soil nitrogen variability at local scales. 

 

Comparison of the kriging, co-kriging and spatial regression models indicated that there was 

no significant difference in the accuracy of the predictions. We can therefore deduce that co-

kriging and spatial regression can successfully be applied in predicting nitrogen 

concentrations in soils as techniques that can reduce or eliminate the costs of soil nutrient 

analysis (Han et al., 2003).   

 

This study differs from previous studies in that; in addition to the use of geostatistical 

methods, we also developed a model that can use remotely sensed data only to predict soil 

nitrogen concentration particularly for use in the University of Zimbabwe farm fields.  

Previous studies have mainly predicted and modelled soil nitrogen concentration using 

geostatistical methods with multiple environmental variables as auxilliary data (Wang et al., 

2013). In this study, Coastal/Aerosol, blue and NIR spectral bands were successfully applied 

in co-kriging and spatial regression analysis to model and map spatial variability of nitrogen 

in soils. To the best of our knowledge, this was the first time that Coastal/Aerosol, blue and 

NIR were used to directly estimate soil nitrogen without using a vegetation surrogate. 

Previous studies at the University of Zimbabwe by Francisca Kunedzimwe used planted 
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maize as surrogate for soil sample data. However, it should be noted that the models 

developed in this study can only be best applied to the specified area under study. Further 

studies need to be conducted to determine whether the same models can be applied on the 

whole farm, especially taking cognisance of the fact that the farm is composed of different 

soil types. There is also need to ascertain the minimum soil sample size and optimum 

sampling distribution for use in modelling and mapping soil nitrogen concentration using 

Landsat 8 data in co-kriging. 

 

4.2 Conclusion 

The following conclusions can be drawn from this study; 

i. Remotely sensed data can successfully be used as a secondary variable (covariate 

data) to model and map soil nitrogen variability, and may reduce the cost of soil 

sampling and laboratory analysis. 

ii.  Remotely sensed data can also be used in spatial regression models to predict soil 

nitrogen variability and eliminate the cost of soil sampling and laboratory analysis. 

iii.  Coastal, Blue and NIR spectral bands can produce significant results when applied in 

modelling and mapping of soil nitrogen variability in both kriging and spatial 

regression interpolation techniques. 
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Appendices 

Appendix 1 Summary of Kriging Models 

Variable Covariance Model Semi-Variogram Model Cross Validation Model 

SqrtN  0.00096304*Nugget+0.025403*Gaussian(300) 0.88506127* x + 0.03282378 

B1 0.0000243*Gaussian(300) 4.061e-7*Nugget+0.0000025098*Gaussian(300) 0.88498202 * x + 0.03278936 

B2 0.000037643*Gaussian(300) 6.657e-7*Nugget+0.0000063056*Gaussian(300)  0.88590597 * x + 0.03255180 

B4 0.000015824*Gaussian(300) 0.000041682*Nugget+0.0000083712*Gaussian(300)  0.88459229 * x + 0.03291993 

B5 0.00038712*Gaussian(300) 0.00033445*Nugget+0.00054221*Gaussian(300)  0.88605119 * x + 0.03267355 

B6 -0.000033181*Gaussian(300) 0.000023299*Nugget+0.000011205*Gaussian(300)  0.88592115 * x + 0.032607555 

B7 -0.000086091*Gaussian(300) 0.000061026*Nugget+0.000033935*Gaussian(300)  0.886247995 * x + 0.032577319 

NDVI  0.00048784*Gaussian(300) 0.0027576*Nugget+0.0012176*Gaussian(300)  0.886209444 * x + 0.032614366 

RVI  0.0045806*Gaussian(300) 0.17498*Nugget+0.14713*Gaussian(300) 0.886288321 * x + 0.032606351 

SAVI  0.00051603*Gaussian(300) 0.0013861*Nugget+0.0011721*Gaussian(300)  0.886295387 * x + 0.032614415 
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Appendix 2 Summary of the Cross Validation of Kriging Models 

 

Model Mean 

Prediction 

errors 

Root-Mean-

Square 

prediction 

errors 

Mean 

Standardized 

prediction errors 

Root-Mean-

Square 

Standardized 

Average 

Standard 

Error  

R
2
 Value 

Nitrogen alone (Sqrt (N%)) 0.00017255 0.03671511 0.01776714 1.03040213 0.03672366 0.8597 

Nitrogen & Coastal band (B1) 0.00015988 0.03676601 0.01783979 1.03279485 0.03671752 0.8593 

Nitrogen & Blue band (B2) 0.00021505 0.03658715 0.01909227 1.02851225 0.03671725 *0.8606 

Nitrogen and Red band (B4) 0.00013961 0.03671559 0.01693828 1.03050200 0.03672359 0.8596 

Nitrogen and NIR band (B5) 0.00031537 0.03663974 0.02108224 1.02878716 0.03672035 0.8602 

Nitrogen and SWIR-1 (B6) 0.00020797 0.03672729 0.01878852 1.03066483 0.03672318 0.8596 

Nitrogen and SWIR-1 (B7) 0.00026967 0.03669918 0.02027696 1.02994834 0.03672246 0.8598 

Nitrogen and RVI 0.00029652 0.03669322 0.02076339 1.02977846 0.03672258 0.8598 

Nitrogen and NDVI 0.00028516 0.03669352 0.02055686 1.02976111 0.03672277 0.8598 

Nitrogen and SAVI 0.00031242 0.03667684 0.02115419 1.02943605 0.03672193 0.86 

*Shows the highest R
2
 value 
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Appendix 3 Summary Statistics of the measured sample nitrogen and the prediction models    

   

 N Mean Minimum  Maximum Standard  

Deviation 

Measured Nitrogen 36 0.2842 (0.08077%N) 0.1402 (0.019656%N) 0.4819 (0.23223%N) 0.09939 

Predicted N (Regression)  36 0.286 (0.081796%N) 0.1824 (0.033270%N) 0.41870 (0.17531%N) 0.06193 

Predicted N (Kriging with Nitrogen 

alone) 

36 0.2845 (0.08094%N) 0.1362 (0.018550%N) 0.468 (0.219024%N) 0.09232 

Predicted N (Kriging with N & Blue 

band) 

36 0.2844 (0.08088%N) 0.1334 (0.017796%N) 0.4711 (0.22194%N) 0.09226 
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Appendix 4 Cross-variograms (Covariance) for Soil Nitrogen and spectral bands and 

vegetation indices 

       

a  Nitrogen and Coastal band   b  Nitrogen and Red band 

 

       

c  Nitrogen and NIR    d  Nitrogen and SWIR-1 


